Suppr超能文献

工程化乙醇驱动的生物合成系统,用于提高 Crabtree 阴性酵母中乙酰辅酶 A 衍生药物的产量。

Engineered ethanol-driven biosynthetic system for improving production of acetyl-CoA derived drugs in Crabtree-negative yeast.

机构信息

State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.

State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China; Shanghai Collaborative Innovation Center for Biomanufacturing, 130 Meilong Road, Shanghai 200237, China.

出版信息

Metab Eng. 2019 Jul;54:275-284. doi: 10.1016/j.ymben.2019.05.001. Epub 2019 May 9.

Abstract

Many natural drugs use acetyl-CoA as the key biosynthetic precursor. While in eukaryotic chassis host like yeast, efficient biosynthesis of these drugs is often hampered by insufficient acetyl-CoA supply because of its compartmentalized metabolism. Reported acetyl-CoA engineering commonly modifies central carbon metabolism to pull and push acetyl-CoA into cytosol from sugars or redirects biosynthetic pathways in organelles, involving complicated metabolic engineering strategies. We constructed a new biosynthetic system based on a Crabtree-negative yeast, which grew exceptionally on ethanol and assimilated ethanol directly in cytosol to acetyl-CoA (3 steps). A glucose-repressed and ethanol-induced transcriptional signal amplification device (ESAD) with 20-fold signal increase was constructed by rewiring native transcriptional regulation circuits. This made ethanol the sole and fast-growing substrate, acetyl-CoA precursor, and strong biosynthetic pathway inducer simultaneously. The ESAD was used for biosynthesis of a commercial hypolipidemic drug intermediate, monacolin J. A strain producing dihydromonacolin L was firstly constructed and systematically engineered. We further developed a coculture system equipped with this upstream strain and a downstream strain with dihydromonacolin L-to-monacolin J module controlled by a synthetic constitutive transcriptional signal amplification device (CSAD). It produced a high monacolin J titre of 2.2 g/L on ethanol in bioreactor. Engineering glucose-supported and ethanol-repressed fatty acids biosynthesis in the upstream strain contributed more acetyl-CoA for monacolin J and improved its titre to 3.2 g/L, far surpassing other reported productions in yeasts. This study provides a new paradigm for facilitating the high-yield production of acetyl-CoA derived pharmaceuticals and value-added molecules.

摘要

许多天然药物使用乙酰辅酶 A 作为关键的生物合成前体。然而,在真核底盘宿主如酵母中,由于其分隔代谢,这些药物的有效生物合成往往受到乙酰辅酶 A 供应不足的限制。已报道的乙酰辅酶 A 工程通常通过修饰中心碳代谢将乙酰辅酶 A 从糖中拉进细胞质或重新定向细胞器中的生物合成途径来实现,涉及复杂的代谢工程策略。我们构建了一个基于 Crabtree 阴性酵母的新生物合成系统,该酵母可以在乙醇上异常生长,并将乙醇直接在细胞质中同化为乙酰辅酶 A(3 步)。通过重新布线天然转录调控回路,构建了一个葡萄糖抑制和乙醇诱导的转录信号放大装置(ESAD),具有 20 倍的信号增加。这使得乙醇成为唯一的快速生长的底物、乙酰辅酶 A 前体和强大的生物合成途径诱导剂。ESAD 用于商业降脂药物中间体莫纳可林 J 的生物合成。首次构建并系统工程化了生产二氢莫纳可林 L 的菌株。我们进一步开发了一种共培养系统,该系统配备了这种上游菌株和一个下游菌株,该下游菌株具有由合成组成型转录信号放大装置(CSAD)控制的二氢莫纳可林 L 到莫纳可林 J 模块。它在生物反应器中以乙醇为底物生产出 2.2g/L 的高莫纳可林 J 产量。在上游菌株中工程化葡萄糖支持和乙醇抑制的脂肪酸生物合成,为莫纳可林 J 提供了更多的乙酰辅酶 A,使其产量提高到 3.2g/L,远远超过其他在酵母中报道的产量。本研究为促进乙酰辅酶 A 衍生药物和增值分子的高产提供了新的范例。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验