From the Stanford Cardiovascular Institute, CA (C.K.L., L.T., N.B., A.W., R.S., N.M., T.K., J.-W.R., J.C.W.).
Department of Medicine, Division of Cardiology (C.K.L., L.T., N.B., A.W., R.S., N.M., T.K., J.-W.R., J.C.W.), Stanford University School of Medicine, CA.
Circ Res. 2019 Jul 5;125(2):212-222. doi: 10.1161/CIRCRESAHA.118.314202. Epub 2019 May 13.
Calcium channel blockers (CCBs) are an important class of drugs in managing cardiovascular diseases. Patients usually rely on these medications for the remainder of their lives after diagnosis. Although the acute pharmacological actions of CCBs in the hearts are well-defined, little is known about the drug-specific effects on human cardiomyocyte transcriptomes and physiological alterations after long-term exposure.
This study aimed to simulate chronic CCB treatment and to examine both the functional and transcriptomic changes in human cardiomyocytes.
We differentiated cardiomyocytes and generated engineered heart tissues from 3 human induced pluripotent stem cell lines and exposed them to 4 different CCBs-nifedipine, amlodipine, diltiazem, and verapamil-at their physiological serum concentrations for 2 weeks. Without inducing cell death and damage to myofilament structure, CCBs elicited line-specific inhibition on calcium kinetics and contractility. While all 4 CCBs exerted similar inhibition on calcium kinetics, verapamil applied the strongest inhibition on cardiomyocyte contractile function. By profiling cardiomyocyte transcriptome after CCB treatment, we identified little overlap in their transcriptome signatures. Verapamil is the only inhibitor that reduced the expression of contraction-related genes, such as MYH (myosin heavy chain) and troponin I, consistent with its depressive effects on contractile function. The reduction of these contraction-related genes may also explain the responsiveness of patients with hypertrophic cardiomyopathy to verapamil in managing left ventricular outflow tract obstruction.
This is the first study to identify the transcriptome signatures of different CCBs in human cardiomyocytes. The distinct gene expression patterns suggest that although the 4 inhibitors act on the same target, they may have distinct effects on normal cardiac cell physiology.
钙通道阻滞剂(CCB)是治疗心血管疾病的重要药物类别。患者在确诊后通常需要终生依赖这些药物。尽管 CCB 在心脏中的急性药理作用已得到明确界定,但对于长期暴露后这些药物对人类心肌细胞转录组的特异性作用以及对生理变化的影响却知之甚少。
本研究旨在模拟慢性 CCB 治疗,并研究人类心肌细胞的功能和转录组变化。
我们从 3 个人诱导多能干细胞系分化心肌细胞并生成工程化心脏组织,并在生理血清浓度下将它们暴露于 4 种不同的 CCB (硝苯地平、氨氯地平、地尔硫卓和维拉帕米)2 周。在不引起细胞死亡和肌丝结构损伤的情况下,CCB 对钙动力学和收缩性产生了特异性的抑制作用。虽然这 4 种 CCB 对钙动力学均产生相似的抑制作用,但维拉帕米对心肌细胞收缩功能的抑制作用最强。通过 CCB 处理后对心肌细胞转录组进行分析,我们发现它们的转录组特征几乎没有重叠。维拉帕米是唯一降低收缩相关基因表达的抑制剂,如 MYH(肌球蛋白重链)和肌钙蛋白 I,与它对收缩功能的抑制作用一致。这些收缩相关基因的减少也可能解释了肥厚型心肌病患者对维拉帕米在治疗左心室流出道梗阻方面的反应性。
这是第一项在人类心肌细胞中鉴定不同 CCB 的转录组特征的研究。不同的基因表达模式表明,尽管这 4 种抑制剂作用于相同的靶标,但它们可能对正常心脏细胞生理学有不同的影响。