Tiburcy Malte, Hudson James E, Balfanz Paul, Schlick Susanne, Meyer Tim, Chang Liao Mei-Ling, Levent Elif, Raad Farah, Zeidler Sebastian, Wingender Edgar, Riegler Johannes, Wang Mouer, Gold Joseph D, Kehat Izhak, Wettwer Erich, Ravens Ursula, Dierickx Pieterjan, van Laake Linda W, Goumans Marie Jose, Khadjeh Sara, Toischer Karl, Hasenfuss Gerd, Couture Larry A, Unger Andreas, Linke Wolfgang A, Araki Toshiyuki, Neel Benjamin, Keller Gordon, Gepstein Lior, Wu Joseph C, Zimmermann Wolfram-Hubertus
From Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Germany (M.T., J.E.H., P.B., S.S., T.M., M.-L.C.L., E.L., F.R., S.Z., E. Wettwer, W.-H.Z.); German Center for Cardiovascular Research (DZHK), partner site Göttingen, Germany (M.T., J.E.H., P.B., S.S., T.M., M.-L.C.L., E.L., F.R., S.Z., E. Wingender, W.A.L., W.-H.Z.); Institute of Bioinformatics, University Medical Center Göttingen, Germany (S.Z., E. Wingender); Stanford Cardiovascular Institute (J.R., M.W., J.D.G., J.C.W.) and Department of Radiology (J.D.G., J.C.W.), Molecular Imaging Program, Stanford University School of Medicine, CA; The Sohnis Laboratory for Cardiac Electrophysiology and Regenerative Medicine, Technion-Israel Institute of Technology, Haifa (I.K., L.G.); Institute of Pharmacology and Toxicology, Technical University Dresden, Germany (E. Wettwer, U.R.); University Medical Center Utrecht and Hubrecht Institute, The Netherlands (P.D., L.W.v.L.); Leiden University Medical Center, The Netherlands (M.J.G.); Clinic for Cardiology and Pneumology, University Medical Center Göttingen, Germany (S.K., K.T., G.H., W.A.L.); Center for Applied Technology, Beckman Research Institute, City of Hope, Duarte, CA (L.A.C.); Department of Cardiovascular Physiology, Institute of Physiology, Ruhr University Bochum, Bochum, Germany (A.U., W.A.L.); New Laura and Isaac Perlmutter Cancer Center at New York University Langone (T.A., B.N.); and McEwen Centre for Regenerative Medicine, Toronto, Canada (G.K.). The current address for Dr Hudson is Laboratory for Cardiac Regeneration, School of Biomedical Sciences, The University of Queensland, Australia.
Circulation. 2017 May 9;135(19):1832-1847. doi: 10.1161/CIRCULATIONAHA.116.024145. Epub 2017 Feb 6.
Advancing structural and functional maturation of stem cell-derived cardiomyocytes remains a key challenge for applications in disease modeling, drug screening, and heart repair. Here, we sought to advance cardiomyocyte maturation in engineered human myocardium (EHM) toward an adult phenotype under defined conditions.
We systematically investigated cell composition, matrix, and media conditions to generate EHM from embryonic and induced pluripotent stem cell-derived cardiomyocytes and fibroblasts with organotypic functionality under serum-free conditions. We used morphological, functional, and transcriptome analyses to benchmark maturation of EHM.
EHM demonstrated important structural and functional properties of postnatal myocardium, including: (1) rod-shaped cardiomyocytes with M bands assembled as a functional syncytium; (2) systolic twitch forces at a similar level as observed in bona fide postnatal myocardium; (3) a positive force-frequency response; (4) inotropic responses to β-adrenergic stimulation mediated via canonical β- and β-adrenoceptor signaling pathways; and (5) evidence for advanced molecular maturation by transcriptome profiling. EHM responded to chronic catecholamine toxicity with contractile dysfunction, cardiomyocyte hypertrophy, cardiomyocyte death, and N-terminal pro B-type natriuretic peptide release; all are classical hallmarks of heart failure. In addition, we demonstrate the scalability of EHM according to anticipated clinical demands for cardiac repair.
We provide proof-of-concept for a universally applicable technology for the engineering of macroscale human myocardium for disease modeling and heart repair from embryonic and induced pluripotent stem cell-derived cardiomyocytes under defined, serum-free conditions.
推动干细胞衍生心肌细胞的结构和功能成熟,仍然是疾病建模、药物筛选和心脏修复应用中的关键挑战。在此,我们试图在特定条件下,使工程化人心肌组织(EHM)中的心肌细胞成熟,向成年表型发展。
我们系统研究了细胞组成、基质和培养基条件,以在无血清条件下,从胚胎和诱导多能干细胞衍生的心肌细胞及成纤维细胞中生成具有器官型功能的EHM。我们使用形态学、功能和转录组分析来衡量EHM的成熟度。
EHM展现出出生后心肌组织的重要结构和功能特性,包括:(1)具有M带的杆状心肌细胞组装成功能性合胞体;(2)收缩抽搐力与真正出生后心肌组织中观察到的水平相似;(3)正性力-频率反应;(4)通过经典的β-和β-肾上腺素能受体信号通路介导的对β-肾上腺素能刺激的变力反应;以及(5)转录组分析显示分子成熟度提高的证据。EHM对慢性儿茶酚胺毒性的反应包括收缩功能障碍、心肌细胞肥大、心肌细胞死亡和N末端前B型利钠肽释放;所有这些都是心力衰竭的典型特征。此外,我们根据心脏修复的预期临床需求,展示了EHM的可扩展性。
我们为一种普遍适用的技术提供了概念验证,该技术可在特定的无血清条件下,从胚胎和诱导多能干细胞衍生的心肌细胞中工程化大规模人心肌组织,用于疾病建模和心脏修复。