Suppr超能文献

具有高级成熟度的定制工程化人类心肌,用于心力衰竭建模与修复应用。

Defined Engineered Human Myocardium With Advanced Maturation for Applications in Heart Failure Modeling and Repair.

作者信息

Tiburcy Malte, Hudson James E, Balfanz Paul, Schlick Susanne, Meyer Tim, Chang Liao Mei-Ling, Levent Elif, Raad Farah, Zeidler Sebastian, Wingender Edgar, Riegler Johannes, Wang Mouer, Gold Joseph D, Kehat Izhak, Wettwer Erich, Ravens Ursula, Dierickx Pieterjan, van Laake Linda W, Goumans Marie Jose, Khadjeh Sara, Toischer Karl, Hasenfuss Gerd, Couture Larry A, Unger Andreas, Linke Wolfgang A, Araki Toshiyuki, Neel Benjamin, Keller Gordon, Gepstein Lior, Wu Joseph C, Zimmermann Wolfram-Hubertus

机构信息

From Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Germany (M.T., J.E.H., P.B., S.S., T.M., M.-L.C.L., E.L., F.R., S.Z., E. Wettwer, W.-H.Z.); German Center for Cardiovascular Research (DZHK), partner site Göttingen, Germany (M.T., J.E.H., P.B., S.S., T.M., M.-L.C.L., E.L., F.R., S.Z., E. Wingender, W.A.L., W.-H.Z.); Institute of Bioinformatics, University Medical Center Göttingen, Germany (S.Z., E. Wingender); Stanford Cardiovascular Institute (J.R., M.W., J.D.G., J.C.W.) and Department of Radiology (J.D.G., J.C.W.), Molecular Imaging Program, Stanford University School of Medicine, CA; The Sohnis Laboratory for Cardiac Electrophysiology and Regenerative Medicine, Technion-Israel Institute of Technology, Haifa (I.K., L.G.); Institute of Pharmacology and Toxicology, Technical University Dresden, Germany (E. Wettwer, U.R.); University Medical Center Utrecht and Hubrecht Institute, The Netherlands (P.D., L.W.v.L.); Leiden University Medical Center, The Netherlands (M.J.G.); Clinic for Cardiology and Pneumology, University Medical Center Göttingen, Germany (S.K., K.T., G.H., W.A.L.); Center for Applied Technology, Beckman Research Institute, City of Hope, Duarte, CA (L.A.C.); Department of Cardiovascular Physiology, Institute of Physiology, Ruhr University Bochum, Bochum, Germany (A.U., W.A.L.); New Laura and Isaac Perlmutter Cancer Center at New York University Langone (T.A., B.N.); and McEwen Centre for Regenerative Medicine, Toronto, Canada (G.K.). The current address for Dr Hudson is Laboratory for Cardiac Regeneration, School of Biomedical Sciences, The University of Queensland, Australia.

出版信息

Circulation. 2017 May 9;135(19):1832-1847. doi: 10.1161/CIRCULATIONAHA.116.024145. Epub 2017 Feb 6.

Abstract

BACKGROUND

Advancing structural and functional maturation of stem cell-derived cardiomyocytes remains a key challenge for applications in disease modeling, drug screening, and heart repair. Here, we sought to advance cardiomyocyte maturation in engineered human myocardium (EHM) toward an adult phenotype under defined conditions.

METHODS

We systematically investigated cell composition, matrix, and media conditions to generate EHM from embryonic and induced pluripotent stem cell-derived cardiomyocytes and fibroblasts with organotypic functionality under serum-free conditions. We used morphological, functional, and transcriptome analyses to benchmark maturation of EHM.

RESULTS

EHM demonstrated important structural and functional properties of postnatal myocardium, including: (1) rod-shaped cardiomyocytes with M bands assembled as a functional syncytium; (2) systolic twitch forces at a similar level as observed in bona fide postnatal myocardium; (3) a positive force-frequency response; (4) inotropic responses to β-adrenergic stimulation mediated via canonical β- and β-adrenoceptor signaling pathways; and (5) evidence for advanced molecular maturation by transcriptome profiling. EHM responded to chronic catecholamine toxicity with contractile dysfunction, cardiomyocyte hypertrophy, cardiomyocyte death, and N-terminal pro B-type natriuretic peptide release; all are classical hallmarks of heart failure. In addition, we demonstrate the scalability of EHM according to anticipated clinical demands for cardiac repair.

CONCLUSIONS

We provide proof-of-concept for a universally applicable technology for the engineering of macroscale human myocardium for disease modeling and heart repair from embryonic and induced pluripotent stem cell-derived cardiomyocytes under defined, serum-free conditions.

摘要

背景

推动干细胞衍生心肌细胞的结构和功能成熟,仍然是疾病建模、药物筛选和心脏修复应用中的关键挑战。在此,我们试图在特定条件下,使工程化人心肌组织(EHM)中的心肌细胞成熟,向成年表型发展。

方法

我们系统研究了细胞组成、基质和培养基条件,以在无血清条件下,从胚胎和诱导多能干细胞衍生的心肌细胞及成纤维细胞中生成具有器官型功能的EHM。我们使用形态学、功能和转录组分析来衡量EHM的成熟度。

结果

EHM展现出出生后心肌组织的重要结构和功能特性,包括:(1)具有M带的杆状心肌细胞组装成功能性合胞体;(2)收缩抽搐力与真正出生后心肌组织中观察到的水平相似;(3)正性力-频率反应;(4)通过经典的β-和β-肾上腺素能受体信号通路介导的对β-肾上腺素能刺激的变力反应;以及(5)转录组分析显示分子成熟度提高的证据。EHM对慢性儿茶酚胺毒性的反应包括收缩功能障碍、心肌细胞肥大、心肌细胞死亡和N末端前B型利钠肽释放;所有这些都是心力衰竭的典型特征。此外,我们根据心脏修复的预期临床需求,展示了EHM的可扩展性。

结论

我们为一种普遍适用的技术提供了概念验证,该技术可在特定的无血清条件下,从胚胎和诱导多能干细胞衍生的心肌细胞中工程化大规模人心肌组织,用于疾病建模和心脏修复。

相似文献

1
Defined Engineered Human Myocardium With Advanced Maturation for Applications in Heart Failure Modeling and Repair.
Circulation. 2017 May 9;135(19):1832-1847. doi: 10.1161/CIRCULATIONAHA.116.024145. Epub 2017 Feb 6.
3
Generation of Engineered Human Myocardium in a Multi-well Format.
STAR Protoc. 2020 Jun 3;1(1):100032. doi: 10.1016/j.xpro.2020.100032. eCollection 2020 Jun 19.
5
Defined Engineered Human Myocardium for Disease Modeling, Drug Screening, and Heart Repair.
Methods Mol Biol. 2022;2485:213-225. doi: 10.1007/978-1-0716-2261-2_14.
7
Human Engineered Heart Muscles Engraft and Survive Long Term in a Rodent Myocardial Infarction Model.
Circ Res. 2015 Sep 25;117(8):720-30. doi: 10.1161/CIRCRESAHA.115.306985. Epub 2015 Aug 19.
8
Cardiac differentiation of human embryonic stem cells and their assembly into engineered heart muscle.
Curr Protoc Cell Biol. 2012 Jun;Chapter 23:Unit23.8. doi: 10.1002/0471143030.cb2308s55.
10
Engineered Heart Repair.
Clin Pharmacol Ther. 2017 Aug;102(2):197-199. doi: 10.1002/cpt.724. Epub 2017 Jun 29.

引用本文的文献

2
Modeling heart rhythm using human engineered heart tissues.
Nat Protoc. 2025 Aug 1. doi: 10.1038/s41596-025-01217-w.
3
NEXN deficiency leads to dilated cardiomyopathy in human pluripotent stem cell-derived cardiomyocytes.
Stem Cell Res Ther. 2025 Jul 26;16(1):402. doi: 10.1186/s13287-025-04484-2.
4
Integrative approaches in cardiac tissue engineering: Bridging cellular complexity to create accurate physiological models.
iScience. 2025 Jun 25;28(8):113003. doi: 10.1016/j.isci.2025.113003. eCollection 2025 Aug 15.
5
Maturation of human cardiac organoids enables complex disease modeling and drug discovery.
Nat Cardiovasc Res. 2025 Jun 25. doi: 10.1038/s44161-025-00669-3.
6
Exploring hiPSC-CM replacement therapy in ischemic hearts.
Basic Res Cardiol. 2025 Jun 10. doi: 10.1007/s00395-025-01117-w.
7
hiPSC-derived cardiac fibroblasts dynamically enhance the mechanical function of hiPSC-derived cardiomyocytes on an engineered substrate.
Front Bioeng Biotechnol. 2025 May 23;13:1546483. doi: 10.3389/fbioe.2025.1546483. eCollection 2025.
8
Cardiac Tissue Engineering for Translational Cardiology: From In Vitro Models to Regenerative Therapies.
Bioengineering (Basel). 2025 May 14;12(5):518. doi: 10.3390/bioengineering12050518.
9
Decoding the Liver-Heart Axis in Cardiometabolic Diseases.
Circ Res. 2025 May 23;136(11):1335-1362. doi: 10.1161/CIRCRESAHA.125.325492. Epub 2025 May 22.
10
Right ventricle remodelling: from to and from simple to complex models.
J Mol Cell Cardiol Plus. 2025 Apr 14;12:100298. doi: 10.1016/j.jmccpl.2025.100298. eCollection 2025 Jun.

本文引用的文献

1
Cardiac repair in guinea pigs with human engineered heart tissue from induced pluripotent stem cells.
Sci Transl Med. 2016 Nov 2;8(363):363ra148. doi: 10.1126/scitranslmed.aaf8781.
3
Human Engineered Heart Muscles Engraft and Survive Long Term in a Rodent Myocardial Infarction Model.
Circ Res. 2015 Sep 25;117(8):720-30. doi: 10.1161/CIRCRESAHA.115.306985. Epub 2015 Aug 19.
4
Chemically defined, albumin-free human cardiomyocyte generation.
Nat Methods. 2015 Jul;12(7):595-6. doi: 10.1038/nmeth.3448.
5
Sensing Cardiac Electrical Activity With a Cardiac Myocyte--Targeted Optogenetic Voltage Indicator.
Circ Res. 2015 Aug 14;117(5):401-12. doi: 10.1161/CIRCRESAHA.117.306143. Epub 2015 Jun 15.
6
Serum supplemented culture medium masks hypertrophic phenotypes in human pluripotent stem cell derived cardiomyocytes.
J Cell Mol Med. 2014 Aug;18(8):1509-18. doi: 10.1111/jcmm.12356. Epub 2014 Jul 1.
7
Chemically defined generation of human cardiomyocytes.
Nat Methods. 2014 Aug;11(8):855-60. doi: 10.1038/nmeth.2999. Epub 2014 Jun 15.
8
Phenotypic screening with human iPS cell-derived cardiomyocytes: HTS-compatible assays for interrogating cardiac hypertrophy.
J Biomol Screen. 2013 Dec;18(10):1203-11. doi: 10.1177/1087057113500812. Epub 2013 Sep 26.
9
Patching the heart: cardiac repair from within and outside.
Circ Res. 2013 Sep 13;113(7):922-32. doi: 10.1161/CIRCRESAHA.113.300216.
10
Biowire: a platform for maturation of human pluripotent stem cell-derived cardiomyocytes.
Nat Methods. 2013 Aug;10(8):781-7. doi: 10.1038/nmeth.2524. Epub 2013 Jun 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验