Suppr超能文献

使用自适应神经网络架构进行龋齿检测的算法分析。

Algorithmic analysis for dental caries detection using an adaptive neural network architecture.

作者信息

Patil Shashikant, Kulkarni Vaishali, Bhise Archana

机构信息

SVKMs, NMIMS. MPSTME Mumbai, India.

EXTC Department, SVKMs, NMIMS, MPSTME, Mumbai, India.

出版信息

Heliyon. 2019 May 7;5(5):e01579. doi: 10.1016/j.heliyon.2019.e01579. eCollection 2019 May.

Abstract

OBJECTIVES

AI techniques have lifelong impact in biomedics and widely accepted outcomes. The sole objective of the study is to evaluate accurate detection of caries using feature extraction and classification of the dental images along with amalgamation Adaptive Dragonfly algorithm (DA) algorithm and Neural Network (NN) classifier.

MATERIALS AND METHODS

Here proposed caries detection model is designed for detecting the tooth cavities in an accurate manner. This methodology has two main phases; feature extraction and classification. In all total 120 images database is split into three sets, randomly for evaluating the performance. Further, this categorization of the test cases aids in ensuring the enhancement of the performance. In each of the test cases, there are 40 caries images the investigation in the performance of the proposed caries detection model was done in terms of accuracy, sensitivity, specificity, and precision, FPR, FNR, NPV, FDR, F1Score and MCC.

RESULTS

Here MPCA with Nonlinear Programming and Adaptive DA, the proposed model is termed as MNP-ADA. The performance of the proposed MPCA-ADA model is evaluated by comparing it over the other existing feature extraction models. MPCA-ADA over the conventional classifier models like PCA-ADA, LDA-ADA and ICA-ADA in terms of performance parameters and MCC for all the test types and have superior results than the existing ones.

CONCLUSION

The research work emphasizes the prospective efficacy of IP and NN algorithms for the detection and diagnosis of dental caries. A novel and improved model shows substantially worthy performance in distinguishing dental caries using image processing techniques.

摘要

目的

人工智能技术在生物医学领域具有深远影响且成果广泛被接受。本研究的唯一目的是通过对牙科图像进行特征提取和分类,结合融合自适应蜻蜓算法(DA)和神经网络(NN)分类器,来评估龋齿的准确检测。

材料与方法

本文提出的龋齿检测模型旨在准确检测牙洞。该方法有两个主要阶段:特征提取和分类。总共120幅图像数据库被随机分为三组,用于评估性能。此外,对测试用例的这种分类有助于确保性能的提升。在每个测试用例中,有40幅龋齿图像,从准确性、敏感性、特异性、精确性、误报率、漏报率、阴性预测值、错误发现率、F1分数和马修斯相关系数等方面对所提出的龋齿检测模型的性能进行了研究。

结果

本文将具有非线性规划和自适应DA的主成分分析(MPCA),所提出的模型称为MNP - ADA。通过与其他现有的特征提取模型进行比较,评估了所提出的MPCA - ADA模型的性能。在所有测试类型的性能参数和马修斯相关系数方面,MPCA - ADA优于传统分类器模型,如PCA - ADA、LDA - ADA和ICA - ADA,并且比现有模型具有更优的结果。

结论

该研究工作强调了独立成分分析(IP)和神经网络算法在龋齿检测和诊断方面的潜在功效。一种新颖且改进的模型在使用图像处理技术区分龋齿方面显示出了非常有价值的性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8585/6506865/f2db0e32a291/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验