Suppr超能文献

基于X线影像的深度学习算法用于龋齿检测和预测的比较分析:一项全面的系统综述

Comparative analysis of deep learning algorithms for dental caries detection and prediction from radiographic images: a comprehensive umbrella review.

作者信息

Dashti Mahmood, Londono Jimmy, Ghasemi Shohreh, Zare Niusha, Samman Meyassara, Ashi Heba, Amirzade-Iranaq Mohammad Hosein, Khosraviani Farshad, Sabeti Mohammad, Khurshid Zohaib

机构信息

Dentofacial Deformities Research Center, Research Institute of Dental Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.

Department of Prosthodontics, Dental College of Georgia at Augusta University, Augusta, Georgia, United States.

出版信息

PeerJ Comput Sci. 2024 Nov 12;10:e2371. doi: 10.7717/peerj-cs.2371. eCollection 2024.

Abstract

BACKGROUND

In recent years, artificial intelligence (AI) and deep learning (DL) have made a considerable impact in dentistry, specifically in advancing image processing algorithms for detecting caries from radiographical images. Despite this progress, there is still a lack of data on the effectiveness of these algorithms in accurately identifying caries. This study provides an overview aimed at evaluating and comparing reviews that focus on the detection of using DL algorithms from 2D radiographs.

MATERIALS AND METHODS

This comprehensive umbrella review adhered to the "Reporting guideline for overviews of reviews of healthcare interventions" (PRIOR). Specific keywords were generated to assess the accuracy of AI and DL algorithms in detecting DC from radiographical images. To ensure the highest quality of research, thorough searches were performed on PubMed/Medline, Web of Science, Scopus, and Embase. Additionally, bias in the selected articles was rigorously assessed using the Joanna Briggs Institute (JBI) tool.

RESULTS

In this umbrella review, seven systematic reviews (SRs) were assessed from a total of 77 studies included. Various DL algorithms were used across these studies, with conventional neural networks and other techniques being the predominant methods for detecting DC. The SRs included in the study examined 24 original articles that used 2D radiographical images for caries detection. Accuracy rates varied between 0.733 and 0.986 across datasets ranging in size from 15 to 2,500 images.

CONCLUSION

The advancement of DL algorithms in detecting and predicting DC through radiographic imaging is a significant breakthrough. These algorithms excel in extracting subtle features from radiographic images and applying machine learning techniques to achieve highly accurate predictions, often outperforming human experts. This advancement holds immense potential to transform diagnostic processes in dentistry, promising to considerably improve patient outcomes.

摘要

背景

近年来,人工智能(AI)和深度学习(DL)在牙科领域产生了重大影响,特别是在推进用于从放射图像中检测龋齿的图像处理算法方面。尽管取得了这一进展,但仍缺乏关于这些算法在准确识别龋齿方面有效性的数据。本研究提供了一个概述,旨在评估和比较专注于使用二维放射照片中的DL算法进行检测的综述。

材料与方法

本综合性伞状综述遵循“医疗保健干预综述报告指南”(PRIOR)。生成了特定的关键词,以评估AI和DL算法从放射图像中检测龋齿的准确性。为确保研究的最高质量,在PubMed/Medline、科学网、Scopus和Embase上进行了全面检索。此外,使用乔安娜·布里格斯研究所(JBI)工具对所选文章中的偏倚进行了严格评估。

结果

在本伞状综述中,从总共纳入的77项研究中评估了7项系统评价(SR)。这些研究中使用了各种DL算法,传统神经网络和其他技术是检测龋齿的主要方法。该研究中纳入的SR审查了24篇使用二维放射图像进行龋齿检测的原始文章。在大小从15到2500张图像的数据集上,准确率在0.733至0.986之间变化。

结论

DL算法在通过放射成像检测和预测龋齿方面的进展是一项重大突破。这些算法擅长从放射图像中提取细微特征,并应用机器学习技术实现高度准确的预测,通常优于人类专家。这一进展具有改变牙科诊断流程的巨大潜力,有望显著改善患者的治疗效果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab37/11622875/6d761fb3bd20/peerj-cs-10-2371-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验