Université Paris-Est, Laboratoire Modélisation et Simulation Multi Echelle, MSME UMR 8208 CNRS, 61 avenue du Général de Gaulle, 94010, Créteil Cedex, France.
School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, 2 George St, Brisbane, QLD, 4000, Australia.
Biomech Model Mechanobiol. 2019 Oct;18(5):1475-1496. doi: 10.1007/s10237-019-01158-w. Epub 2019 May 13.
Significant progress has been made to identify the cells and signaling molecules involved in the mechanobiological regulation of bone remodeling. It is now well accepted that osteocytes act as mechanosensory cells in bone expressing several signaling molecules such as nitric oxide (NO) and sclerostin (Scl) which are able to control bone remodeling responses. In this paper, we present a comprehensive multiscale computational model of bone remodeling which incorporates biochemical osteocyte feedback. The mechanostat theory is quantitatively incorporated into the model using mechanical feedback to control expression levels of NO and Scl. The catabolic signaling pathway RANK-RANKL-OPG is co-regulated via (continuous) PTH and NO, while the anabolic Wnt signaling pathway is described via competitive binding reactions between Wnt, Scl and the Wnt receptors LRP5/6. Using this novel model of bone remodeling, we investigate the effects of changes in the mechanical loading and hormonal environment on bone balance. Our numerical simulations show that we can calibrate the mechanostat anabolic and catabolic regulatory mechanisms so that they are mutually exclusive. This is consistent with previous models that use a Wolff-type law to regulate bone resorption and formation separately. Furthermore, mechanical feedback provides an effective mechanism to obtain physiological bone loss responses due to mechanical disuse and/or osteoporosis.
在确定参与骨重塑的机械生物学调节的细胞和信号分子方面已经取得了重大进展。现在人们普遍认为,成骨细胞在骨骼中充当机械感受器细胞,表达几种信号分子,如一氧化氮(NO)和硬化蛋白(Scl),它们能够控制骨重塑反应。在本文中,我们提出了一个全面的多尺度计算模型,该模型包含生化成骨细胞反馈。使用机械反馈来控制 NO 和 Scl 的表达水平,将机械稳定器理论定量纳入模型中。RANK-RANKL-OPG 分解代谢信号通路通过(连续)PTH 和 NO 共同调节,而 Wnt 信号通路通过 Wnt、Scl 和 Wnt 受体 LRP5/6 之间的竞争结合反应来描述。使用这种新的骨重塑模型,我们研究了机械负荷和激素环境变化对骨平衡的影响。我们的数值模拟表明,我们可以校准机械稳定器的合成代谢和分解代谢调节机制,使其相互排斥。这与以前使用 Wolff 定律分别调节骨吸收和形成的模型一致。此外,机械反馈提供了一种有效的机制,可以获得由于机械废用和/或骨质疏松症引起的生理性骨丢失反应。