Suppr超能文献

将 NiFe-LDH 纳米片化学结合在 rGO 上,用于超级锂离子电容器。

Chemically Bonding NiFe-LDH Nanosheets on rGO for Superior Lithium-Ion Capacitors.

机构信息

State Key Laboratory of Chemical Engineering , East China University of Science and Technology , Shanghai 200237 , China.

Department of Materials Science and Engineering , University of Washington , Seattle , Washington 98195 , United States.

出版信息

ACS Appl Mater Interfaces. 2019 Oct 2;11(39):35977-35986. doi: 10.1021/acsami.9b10719. Epub 2019 Sep 20.

Abstract

Layered double hydroxides (LDHs) have attracted tremendous interest for applications in energy harvest and storage. However, the aggregation of nanosheets compromises the accessible active sites and limits their electrochemical performance, especially at high rates. The present study reports the synthesis of highly dispersed NiFe-LDH nanosheets anchored on reduced graphene oxide (NiFe-LDH/rGO) composites chemically bonded via a facile one-step hydrothermal method. Defect-riched rGO provides abundant active sites for heterogeneous nucleation of NiFe-LDH nanosheets, achieving the much efficient charge transfer between rGO and NiFe-LDH as compared to physically mixed NiFe-LDH + rGO. The crystallite size can effectively reduce to 5.5 nm smaller than 15.1 nm of NiFe-LDH without rGO, beneficial to expose more active surface for fast ion diffusion and redox reactions. NiFe-LDH/rGO as an anode material in lithium-ion batteries shows superior lithium storage capacity with 1202 mAh g after 100 cycles at 100 mA g and high-rate performance with 543 mAh g even at 2000 mA g. The corresponding lithium-ion capacitor with NiFe-LDH/rGO anode and mesoporous carbon microsphere cathode exhibits high energy density and power density simultaneously, with 133 Wh kg at 25 W kg and 4016 W kg at 58 Wh kg, showing the great potential for high-performance hybrid energy storage systems.

摘要

层状双氢氧化物 (LDHs) 在能量收集和存储应用中引起了极大的关注。然而,纳米片的聚集会损害可及的活性位点,并限制其电化学性能,尤其是在高电流密度下。本研究报道了通过简便的一步水热法化学结合合成高度分散的负载在还原氧化石墨烯 (rGO) 上的 NiFe-LDH 纳米片复合材料。富缺陷的 rGO 为 NiFe-LDH 纳米片的异质成核提供了丰富的活性位点,与物理混合的 NiFe-LDH + rGO 相比,实现了 rGO 和 NiFe-LDH 之间更有效的电荷转移。与没有 rGO 的 NiFe-LDH 相比,NiFe-LDH 的晶粒度可以有效减小到 5.5nm,有利于暴露更多的活性表面,促进快速离子扩散和氧化还原反应。作为锂离子电池的阳极材料,NiFe-LDH/rGO 在 100 mA g 下循环 100 次后具有 1202 mAh g 的出色锂存储容量,在 2000 mA g 下具有 543 mAh g 的高倍率性能。具有 NiFe-LDH/rGO 阳极和介孔碳微球阴极的相应锂离子电容器同时具有高能量密度和功率密度,在 25 W kg 时为 133 Wh kg,在 58 Wh kg 时为 4016 W kg,显示出用于高性能混合储能系统的巨大潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验