Suppr超能文献

利用深度学习和伪彩色成像的离散PackTest产品最大化连续量化测量的准确性。

Maximizing the Accuracy of Continuous Quantification Measures Using Discrete PackTest Products with Deep Learning and Pseudocolor Imaging.

作者信息

Doi Ryoichi

机构信息

Faculty of Social-Human Environmentology, Daito Bunka University, 1-9-1 Takashimadaira, Itabashi-ku, Tokyo 175-8571, Japan.

出版信息

J Anal Methods Chem. 2019 Apr 9;2019:1685382. doi: 10.1155/2019/1685382. eCollection 2019.

Abstract

Using the standard colors provided in the instructions, PackTest products can approximate and quickly estimate the chemical characteristics of liquid samples. The combination of PackTest products and deep learning was examined for its accuracy and precision in quantifying chemical oxygen demand, ammonium ion, and phosphate ion using a pseudocolor imaging method. Each PackTest product underwent reactions with standard solutions. The generated color was scanner-read. From the color image, ten grayscale images representing the intensity values of red, green, blue, cyan, magenta, yellow, key black, and , and the values of and were generated. Using the grayscale images representing the red, green, and blue intensity values, 73 other grayscale images were generated. The grayscale intensity values were used to prepare datasets for the ten and 83 (=10 + 73) images. For both datasets, chemical oxygen demand quantification was successful, resulting in values of normalized mean absolute error of less than 0.4% and coefficients of determination that were greater than 0.9996. However, the quantification of ammonium and phosphate ions commonly provided false positive results for the standard solution that contained no ammonium ion/phosphate ion. For ammonium ion, multiple regression markedly improved the accuracy using the pseudocolor method. Phosphate ion quantification was also improved by avoiding the use of an estimated value for the reference solution that contained no phosphate ion. Real details of the measurements and the perspectives were discussed.

摘要

使用说明书中提供的标准颜色,PackTest产品可以近似并快速估计液体样品的化学特性。研究了PackTest产品与深度学习相结合在使用伪彩色成像方法定量化学需氧量、铵离子和磷酸根离子方面的准确性和精密度。每个PackTest产品都与标准溶液进行反应。生成的颜色通过扫描仪读取。从彩色图像中,生成了代表红色、绿色、蓝色、青色、品红色、黄色、关键黑色以及 和 值的十个灰度图像。使用代表红色、绿色和蓝色强度值的灰度图像,又生成了73个其他灰度图像。灰度强度值用于为这十个和83个(=10 + 73)图像准备数据集。对于这两个数据集,化学需氧量定量均成功,归一化平均绝对误差值小于0.4%,决定系数大于0.9996。然而,对于不含铵离子/磷酸根离子的标准溶液,铵离子和磷酸根离子的定量通常会给出假阳性结果。对于铵离子,多元回归使用伪彩色方法显著提高了准确性。通过避免对不含磷酸根离子的参考溶液使用估计值,磷酸根离子定量也得到了改善。讨论了测量的实际细节和前景。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3625/6481099/a822f009b68c/JAMC2019-1685382.001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验