Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300072, People's Republic of China.
SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China.
J Ind Microbiol Biotechnol. 2018 Mar;45(3):187-199. doi: 10.1007/s10295-018-2017-5. Epub 2018 Jan 30.
Isobutanol as a more desirable biofuel has attracted much attention. In our previous work, an isobutanol-producing strain Escherichia coli LA09 had been obtained by rational redox status improvement under guidance of the genome-scale metabolic model. However, the low transformation from sugar to isobutanol is a limiting factor for isobutanol production by E. coli LA09. In this study, the intracellular metabolic profiles of the isobutanol-producing E. coli LA09 with different initial glucose concentrations were investigated and the metabolic reaction of fructose 6-phosphate to 1, 6-diphosphate fructose in glycolytic pathway was identified as the rate-limiting step of glucose transformation. Thus, redesigned carbon catabolism was implemented by altering flux of sugar metabolism. Here, the heterologous Entner-Doudoroff (ED) pathway from Zymomonas mobilis was constructed, and the adaptation of upper and lower parts of ED pathway was further improved with artificial promoters to alleviate the accumulation of toxic intermediate metabolite 2-keto-3-deoxy-6-phospho-gluconate (KDPG). Finally, the best isobutanol-producing E. coli ED02 with higher glucose transformation and isobutanol production was obtained. In the fermentation of strain E. coli ED02 with 45 g/L initial glucose, the isobutanol titer, yield and average producing rate were, respectively, increased by 56.8, 47.4 and 88.1% to 13.67 g/L, 0.50 C-mol/C-mol and 0.456 g/(L × h) in a shorter time of 30 h, compared with that of the starting strain E. coli LA09.
异丁醇作为一种更理想的生物燃料引起了广泛关注。在我们之前的工作中,通过基因组规模代谢模型的指导,对理性氧化还原状态的改善,获得了一株能够生产异丁醇的大肠杆菌 LA09 菌株。然而,糖向异丁醇的转化率低是大肠杆菌 LA09 生产异丁醇的一个限制因素。在这项研究中,我们研究了不同初始葡萄糖浓度下产异丁醇大肠杆菌 LA09 的细胞内代谢谱,确定了糖酵解途径中果糖 6-磷酸转化为 1,6-二磷酸果糖的代谢反应是葡萄糖转化的限速步骤。因此,通过改变糖代谢通量,重新设计了碳分解代谢。在这里,我们构建了来自运动发酵单胞菌的异源 Entner-Doudoroff (ED) 途径,并进一步利用人工启动子改进 ED 途径的上下游部分,以减轻有毒中间代谢物 2-酮-3-脱氧-6-磷酸葡萄糖酸 (KDPG) 的积累。最终,获得了具有更高葡萄糖转化率和异丁醇产量的最佳产异丁醇大肠杆菌 ED02 菌株。在初始葡萄糖浓度为 45 g/L 的发酵中,与出发菌株大肠杆菌 LA09 相比,大肠杆菌 ED02 的异丁醇产量、得率和平均生产速率分别提高了 56.8%、47.4%和 88.1%,达到 13.67 g/L、0.50 C-mol/C-mol 和 0.456 g/(L×h),发酵时间也缩短至 30 h。