DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI 53726, United States; Cell and Molecular Biology Graduate Training Program, University of Wisconsin-Madison, Madison, WI 53706, United States; Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, United States.
DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI 53726, United States; Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, United States.
Metab Eng. 2019 Mar;52:324-340. doi: 10.1016/j.ymben.2018.12.008. Epub 2018 Dec 27.
Efficient microbial production of the next-generation biofuel isobutanol (IBA) is limited by metabolic bottlenecks. Overcoming these bottlenecks will be aided by knowing the optimal ratio of enzymes for efficient flux through the IBA biosynthetic pathway. OptSSeq (Optimization by Selection and Sequencing) accomplishes this goal by tracking growth rate-linked selection of optimal expression elements from a combinatorial library. The 5-step pathway to IBA consists of Acetolactate synthase (AlsS), Keto-acid reductoisomerase (KARI), Di-hydroxy acid dehydratase (DHAD), Ketoisovalerate decarboxylase (Kivd) and Alcohol dehydrogenase (Adh). Using OptSSeq, we identified gene expression elements leading to optimal enzyme levels that enabled theoretically maximal productivities per cell biomass in Escherichia coli. We identified KARI as the rate-limiting step, requiring the highest levels of enzymes expression, followed by AlsS and AdhA. DHAD and Kivd required relatively lower levels of expression for optimal IBA production. OptSSeq also enabled the identification of an Adh enzyme variant capable of an improved rate of IBA production. Using models that predict impacts of enzyme synthesis costs on cellular growth rates, we found that optimum levels of pathway enzymes led to maximal IBA production, and that additional limitations lie in the E. coli metabolic network. Our optimized constructs enabled the production of ~3 g IBA per hour per gram dry cell weight and was achieved with 20 % of the total cell protein devoted to IBA-pathway enzymes in the molar ratio 2.5:6.7:2:1:5.2 (AlsS:IlvC:IlvD:Kivd:AdhA). These enzyme levels and ratios optimal for IBA production in E. coli provide a useful starting point for optimizing production of IBA in diverse microbes and fermentation conditions.
高效微生物生产下一代生物燃料异丁醇(IBA)受到代谢瓶颈的限制。通过了解有效通量通过 IBA 生物合成途径的最佳酶比,将有助于克服这些瓶颈。OptSSeq(通过选择和测序进行优化)通过从组合文库中跟踪与生长速率相关的最佳表达元件的选择来实现此目标。IBA 的 5 步途径包括乙酰乳酸合酶(AlsS)、酮酸还原异构酶(KARI)、二羟基酸脱水酶(DHAD)、酮异戊酸脱羧酶(Kivd)和醇脱氢酶(Adh)。使用 OptSSeq,我们确定了导致最佳酶水平的基因表达元件,从而使大肠杆菌中每细胞生物质的理论最大生产率成为可能。我们确定 KARI 是限速步骤,需要最高水平的酶表达,其次是 AlsS 和 AdhA。DHAD 和 Kivd 需要相对较低的表达水平才能实现最佳 IBA 产量。OptSSeq 还能够识别出一种能够提高 IBA 产量的 Adh 酶变体。使用预测酶合成成本对细胞生长速率影响的模型,我们发现途径酶的最佳水平导致了最大的 IBA 产量,并且大肠杆菌代谢网络中存在其他限制。我们优化的构建体使每克干细胞重量每小时能够生产约 3 g IBA,并且 20%的总细胞蛋白用于 IBA 途径酶,摩尔比为 2.5:6.7:2:1:5.2(AlsS:IlvC:IlvD:Kivd:AdhA)。这些用于 IBA 在大肠杆菌中生产的最佳酶水平和比例为在不同微生物和发酵条件下优化 IBA 生产提供了有用的起点。