Suppr超能文献

保障生物科学研究计算的未来。

Securing the future of research computing in the biosciences.

机构信息

School of Computing, University of Leeds, Leeds, United Kingdom.

School of Pathology, Stanford University, Palo Alto, California, United States of America.

出版信息

PLoS Comput Biol. 2019 May 16;15(5):e1006958. doi: 10.1371/journal.pcbi.1006958. eCollection 2019 May.

Abstract

Improvements in technology often drive scientific discovery. Therefore, research requires sustained investment in the latest equipment and training for the researchers who are going to use it. Prioritising and administering infrastructure investment is challenging because future needs are difficult to predict. In the past, highly computationally demanding research was associated primarily with particle physics and astronomy experiments. However, as biology becomes more quantitative and bioscientists generate more and more data, their computational requirements may ultimately exceed those of physical scientists. Computation has always been central to bioinformatics, but now imaging experiments have rapidly growing data processing and storage requirements. There is also an urgent need for new modelling and simulation tools to provide insight and understanding of these biophysical experiments. Bioscience communities must work together to provide the software and skills training needed in their areas. Research-active institutions need to recognise that computation is now vital in many more areas of discovery and create an environment where it can be embraced. The public must also become aware of both the power and limitations of computing, particularly with respect to their health and personal data.

摘要

技术的进步往往推动着科学发现。因此,研究需要持续投资于最新的设备,并为将要使用这些设备的研究人员提供培训。由于难以预测未来的需求,优先考虑和管理基础设施投资具有挑战性。过去,高计算需求的研究主要与粒子物理和天文实验有关。然而,随着生物学变得更加定量,生物学家生成的数据越来越多,他们的计算需求最终可能超过物理科学家。计算一直是生物信息学的核心,但现在成像实验对数据处理和存储的需求也在迅速增长。还迫切需要新的建模和模拟工具,以提供对这些生物物理实验的深入理解。生物科学界必须共同努力,提供其领域所需的软件和技能培训。有研究活动的机构需要认识到计算现在在许多更广泛的发现领域至关重要,并创造一个可以接受计算的环境。公众也必须意识到计算的强大功能和局限性,特别是在涉及他们的健康和个人数据方面。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fba5/6521984/c9ed9d4d2c99/pcbi.1006958.g001.jpg

引用本文的文献

1
Pancreatlas: Applying an Adaptable Framework to Map the Human Pancreas in Health and Disease.
Patterns (N Y). 2020 Oct 5;1(8):100120. doi: 10.1016/j.patter.2020.100120. eCollection 2020 Nov 13.

本文引用的文献

1
Artificial Intelligence in Drug Design-The Storm Before the Calm?
ACS Med Chem Lett. 2018 Nov 2;9(12):1150-1152. doi: 10.1021/acsmedchemlett.8b00500. eCollection 2018 Dec 13.
3
A call for public archives for biological image data.
Nat Methods. 2018 Nov;15(11):849-854. doi: 10.1038/s41592-018-0195-8.
5
TEM, user-friendly software for single-particle image processing.
Elife. 2018 Mar 7;7:e35383. doi: 10.7554/eLife.35383.
6
Exploring applications of crowdsourcing to cryo-EM.
J Struct Biol. 2018 Jul;203(1):37-45. doi: 10.1016/j.jsb.2018.02.006. Epub 2018 Feb 24.
7
New Opportunities Created by Single-Particle Cryo-EM: The Mapping of Conformational Space.
Biochemistry. 2018 Feb 13;57(6):888. doi: 10.1021/acs.biochem.8b00064. Epub 2018 Jan 25.
8
The rise of deep learning in drug discovery.
Drug Discov Today. 2018 Jun;23(6):1241-1250. doi: 10.1016/j.drudis.2018.01.039. Epub 2018 Jan 31.
9
True Molecular Scale Visualization of Variable Clustering Properties of Ryanodine Receptors.
Cell Rep. 2018 Jan 9;22(2):557-567. doi: 10.1016/j.celrep.2017.12.045.
10
The 2018 Nucleic Acids Research database issue and the online molecular biology database collection.
Nucleic Acids Res. 2018 Jan 4;46(D1):D1-D7. doi: 10.1093/nar/gkx1235.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验