Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts.
Department of Ecology and Evolutionary Biology, Brown University, Providence, Rhode Island.
Protein Sci. 2019 Jul;28(7):1359-1367. doi: 10.1002/pro.3646. Epub 2019 May 30.
While reverse genetics and functional genomics have long affirmed the role of individual mutations in determining protein function, there have been fewer studies addressing how large-scale changes in protein sequences, such as in entire modular segments, influence protein function and evolution. Given how recombination can reassort protein sequences, these types of changes may play an underappreciated role in how novel protein functions evolve in nature. Such studies could aid our understanding of whether certain organismal phenotypes related to protein function-such as growth in the presence or absence of an antibiotic-are robust with respect to the identity of certain modular segments. In this study, we combine molecular genetics with biochemical and biophysical methods to gain a better understanding of protein modularity in dihydrofolate reductase (DHFR), an enzyme target of antibiotics also widely used as a model for protein evolution. We replace an integral α-helical segment of Escherichia coli DHFR with segments from a number of different organisms (many nonmicrobial) and examine how these chimeric enzymes affect organismal phenotypes (e.g., resistance to an antibiotic) as well as biophysical properties of the enzyme (e.g., thermostability). We find that organismal phenotypes and enzyme properties are highly sensitive to the identity of DHFR modules, and that this chimeric approach can create enzymes with diverse biophysical characteristics.
虽然反向遗传学和功能基因组学早已证实了单个突变在决定蛋白质功能方面的作用,但关于蛋白质序列的大规模变化(如整个模块片段)如何影响蛋白质功能和进化的研究较少。鉴于重组可以重新组合蛋白质序列,这些类型的变化可能在自然界中新型蛋白质功能的进化中起着被低估的作用。这些研究可以帮助我们了解与蛋白质功能相关的某些生物体表型(例如在存在或不存在抗生素的情况下的生长)是否与某些模块片段的身份有关。在这项研究中,我们将分子遗传学与生化和生物物理方法相结合,以更好地了解二氢叶酸还原酶(DHFR)中的蛋白质模块化,DHFR 是抗生素的酶靶标,也广泛用作蛋白质进化的模型。我们用来自许多不同生物体(许多非微生物)的片段替换大肠杆菌 DHFR 的一个完整的α螺旋片段,并研究这些嵌合酶如何影响生物体表型(例如对抗生素的抗性)以及酶的生物物理特性(例如热稳定性)。我们发现生物体表型和酶特性对 DHFR 模块的身份高度敏感,并且这种嵌合方法可以产生具有不同生物物理特性的酶。