Suppr超能文献

连接导向图傅里叶变换在运动想象脑机接口解码中的应用。

Connectivity steered graph Fourier transform for motor imagery BCI decoding.

机构信息

AIIA Lab, Informatics Department, AUTH, Thessaloniki, Greece. Information Technologies Institute (ITI), Centre for Research and Technology Hellas, Thermi-Thessaloniki, Greece.

出版信息

J Neural Eng. 2019 Aug 21;16(5):056021. doi: 10.1088/1741-2552/ab21fd.

Abstract

OBJECTIVE

Graph signal processing (GSP) concepts are exploited for brain activity decoding and particularly the detection and recognition of a motor imagery (MI) movement. A novel signal analytic technique that combines graph Fourier transform (GFT) with estimates of cross-frequency coupling (CFC) and discriminative learning is introduced as a means to recover the subject's intention from the multichannel signal.

APPROACH

Adopting a multi-view perspective, based on the popular concept of co-existing and interacting brain rhythms, a multilayer network model is first built from empirical data and its connectivity graph is used to derive the GFT-basis. A personalized decoding scheme supporting a binary decision, either 'left versus right' or 'rest versus MI', is crafted from a small set of training trials. Electroencephalographic (EEG) activity from 12 volunteers recorded during two randomly alternating, externally cued, MI tasks (clenching either left or right fist) and a rest condition is used to introduce and validate our methodology. In addition, the introduced methodology was further validated based on dataset IVa of BCI III competition.

MAIN RESULTS

Our GFT-domain decoding scheme achieves nearly optimal performance and proves superior to alternative techniques that are very popular in the field.

SIGNIFICANCE

At a conceptual level, our work suggests a fruitful way to introduce network neuroscience in BCI research. At a more practical level, it is characterized by efficiency. Training is realized using a small number of exemplar trials and decoding requires very simple operations that leaves room for real-time implementation.

摘要

目的

利用图信号处理(GSP)概念对脑活动进行解码,特别是检测和识别运动想象(MI)运动。本文提出了一种新的信号分析技术,它结合了图傅里叶变换(GFT)与交叉频率耦合(CFC)的估计和判别学习,作为从多通道信号中恢复受试者意图的一种手段。

方法

采用多视图的视角,基于共存和相互作用的脑节律的流行概念,首先从经验数据构建一个多层网络模型,并使用其连接图来导出 GFT 基。一个个性化的解码方案,支持二进制决策,即“左与右”或“休息与 MI”,是从一小部分训练试验中制作的。来自 12 名志愿者在两个随机交替的外部提示 MI 任务(握紧左或右手拳)和休息状态下记录的脑电图(EEG)活动被用于介绍和验证我们的方法。此外,所提出的方法还基于 BCI III 竞赛的数据集 IVa 进行了验证。

主要结果

我们的 GFT 域解码方案实现了近乎最优的性能,并且优于该领域非常流行的替代技术。

意义

在概念层面上,我们的工作为在脑机接口研究中引入网络神经科学提供了一种有前途的方法。在更实际的层面上,它的特点是效率。训练是使用少数范例试验实现的,解码需要非常简单的操作,为实时实现留出了空间。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验