Institute of Social and Preventive Medicine (ISPM), University of Bern, Bern, Switzerland.
Sci Rep. 2019 May 17;9(1):7547. doi: 10.1038/s41598-019-44003-x.
Mathematical modelling studies of C. trachomatis transmission predict that interventions to screen and treat chlamydia infection will reduce prevalence to a greater degree than that observed in empirical population-based studies. We investigated two factors that might explain this discrepancy: partial immunity after natural infection clearance and differential screening coverage according to infection risk. We used four variants of a compartmental model for heterosexual C. trachomatis transmission, parameterized using data from England about sexual behaviour, C. trachomatis testing, diagnosis and prevalence, and Markov Chain Monte Carlo methods for statistical inference. In our baseline scenario, a model in which partial immunity follows natural infection clearance and the proportion of tests done in chlamydia-infected people decreases over time fitted the data best. The model predicts that partial immunity reduced susceptibility to reinfection by 68% (95% Bayesian credible interval 46-87%). The estimated screening rate was 4.3 (2.2-6.6) times higher for infected than for uninfected women in 2000, decreasing to 2.1 (1.4-2.9) in 2011. Despite incorporation of these factors, the model still predicted a marked decline in C. trachomatis prevalence. To reduce the gap between modelling and data, advances are needed in knowledge about factors influencing the coverage of chlamydia screening, the immunology of C. trachomatis and changes in C. trachomatis prevalence at the population level.
数学模型研究表明,筛查和治疗衣原体感染的干预措施将降低流行率,其程度超过基于经验的人群研究观察到的程度。我们研究了两个可能解释这种差异的因素:自然感染清除后的部分免疫力和根据感染风险进行的差异筛查覆盖。我们使用了四种异性恋 C. trachomatis 传播的房室模型变体,这些变体使用了关于性行为、C. trachomatis 检测、诊断和流行率的英格兰数据进行参数化,并使用马尔可夫链蒙特卡罗方法进行统计推断。在我们的基线情景中,一个假设自然感染清除后存在部分免疫力,且随着时间的推移,感染人群中的检测比例下降的模型最符合数据。该模型预测,部分免疫力将再次感染的易感性降低了 68%(95%贝叶斯可信区间 46-87%)。在 2000 年,感染女性的筛查率比未感染女性高 4.3 倍(2.2-6.6),到 2011 年降至 2.1 倍(1.4-2.9)。尽管考虑了这些因素,该模型仍预测 C. trachomatis 的流行率将显著下降。为了缩小建模和数据之间的差距,需要在影响衣原体筛查覆盖率的因素、C. trachomatis 的免疫学以及人群水平 C. trachomatis 流行率变化方面的知识方面取得进展。