Suppr超能文献

形态学的统计模型预测了在视觉单词识别过程中的眼动追踪测量。

Statistical models of morphology predict eye-tracking measures during visual word recognition.

机构信息

Center for Multilingualism in Society Across the Lifespan, Department of Linguistics and Scandinavian Studies, University of Oslo, Oslo, Norway.

Department of Psychology, Åbo Akademi University, Turku, Finland.

出版信息

Mem Cognit. 2019 Oct;47(7):1245-1269. doi: 10.3758/s13421-019-00931-7.

Abstract

We studied how statistical models of morphology that are built on different kinds of representational units, i.e., models emphasizing either holistic units or decomposition, perform in predicting human word recognition. More specifically, we studied the predictive power of such models at early vs. late stages of word recognition by using eye-tracking during two tasks. The tasks included a standard lexical decision task and a word recognition task that assumedly places less emphasis on postlexical reanalysis and decision processes. The lexical decision results showed good performance of Morfessor models based on the Minimum Description Length optimization principle. Models which segment words at some morpheme boundaries and keep other boundaries unsegmented performed well both at early and late stages of word recognition, supporting dual- or multiple-route cognitive models of morphological processing. Statistical models based on full forms fared better in late than early measures. The results of the second, multi-word recognition task showed that early and late stages of processing often involve accessing morphological constituents, with the exception of short complex words. Late stages of word recognition additionally involve predicting upcoming morphemes on the basis of previous ones in multimorphemic words. The statistical models based fully on whole words did not fare well in this task. Thus, we assume that the good performance of such models in global measures such as gaze durations or reaction times in lexical decision largely stems from postlexical reanalysis or decision processes. This finding highlights the importance of considering task demands in the study of morphological processing.

摘要

我们研究了基于不同表示单位的形态学统计模型在预测人类单词识别方面的表现,这些模型强调整体单位或分解。更具体地说,我们通过在两个任务中使用眼动追踪来研究这些模型在单词识别的早期和晚期阶段的预测能力。这些任务包括标准的词汇判断任务和一个假设较少依赖词后再分析和决策过程的单词识别任务。词汇判断结果显示,基于最小描述长度优化原则的 Morfessor 模型表现良好。在一些词素边界上分段而在其他边界上不分段的模型在单词识别的早期和晚期阶段都表现良好,支持形态处理的双重或多重认知模型。基于完整形式的统计模型在晚期测量中表现优于早期测量。第二个多词识别任务的结果表明,处理的早期和晚期阶段通常涉及访问形态成分,除了短的复杂词。在多词素词中,单词识别的晚期阶段还涉及根据前一个词素预测即将到来的词素。完全基于整个词的统计模型在这项任务中表现不佳。因此,我们假设这些模型在词汇判断中的全局测量(如注视持续时间或反应时间)中的良好表现主要源于词后再分析或决策过程。这一发现强调了在形态处理研究中考虑任务需求的重要性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ced/6800854/2feb7e56009f/13421_2019_931_Fig1_HTML.jpg

相似文献

1
Statistical models of morphology predict eye-tracking measures during visual word recognition.
Mem Cognit. 2019 Oct;47(7):1245-1269. doi: 10.3758/s13421-019-00931-7.
3
Surviving blind decomposition: A distributional analysis of the time-course of complex word recognition.
J Exp Psychol Learn Mem Cogn. 2017 Nov;43(11):1793-1820. doi: 10.1037/xlm0000411. Epub 2017 Apr 27.
4
How strongly do word reading times and lexical decision times correlate? Combining data from eye movement corpora and megastudies.
Q J Exp Psychol (Hove). 2013;66(3):563-80. doi: 10.1080/17470218.2012.658820. Epub 2012 Apr 24.
5
Orthographic and root frequency effects in Arabic: Evidence from eye movements and lexical decision.
J Exp Psychol Learn Mem Cogn. 2019 May;45(5):934-954. doi: 10.1037/xlm0000626. Epub 2018 Sep 24.
6
Attentional resource demands of visual word recognition in naming and lexical decisions.
J Exp Psychol Hum Percept Perform. 1992 May;18(2):460-70. doi: 10.1037//0096-1523.18.2.460.
7
Information properties of morphologically complex words modulate brain activity during word reading.
Hum Brain Mapp. 2018 Jun;39(6):2583-2595. doi: 10.1002/hbm.24025. Epub 2018 Mar 9.
8
A paradox of apparent brainless behavior: The time-course of compound word recognition.
Cortex. 2019 Jul;116:250-267. doi: 10.1016/j.cortex.2018.07.003. Epub 2018 Aug 7.

引用本文的文献

1
Subword Representations Successfully Decode Brain Responses to Morphologically Complex Written Words.
Neurobiol Lang (Camb). 2024 Sep 11;5(4):844-863. doi: 10.1162/nol_a_00149. eCollection 2024.

本文引用的文献

2
Decomposition, lookup, and recombination: MEG evidence for the full decomposition model of complex visual word recognition.
Brain Lang. 2015 Apr;143:81-96. doi: 10.1016/j.bandl.2015.03.001. Epub 2015 Mar 19.
3
The role of morphology in phoneme prediction: evidence from MEG.
Brain Lang. 2014 Feb;129:14-23. doi: 10.1016/j.bandl.2013.11.004. Epub 2014 Jan 31.
4
Connectionism and the Role of Morphology in Visual Word Recognition.
Ment Lex. 2010 Jan 1;5(3):371-400. doi: 10.1075/ml.5.3.07rue.
5
Probability and surprisal in auditory comprehension of morphologically complex words.
Cognition. 2012 Oct;125(1):80-106. doi: 10.1016/j.cognition.2012.06.003. Epub 2012 Jul 27.
6
How strongly do word reading times and lexical decision times correlate? Combining data from eye movement corpora and megastudies.
Q J Exp Psychol (Hove). 2013;66(3):563-80. doi: 10.1080/17470218.2012.658820. Epub 2012 Apr 24.
8
Insensitivity of the human sentence-processing system to hierarchical structure.
Psychol Sci. 2011 Jun;22(6):829-34. doi: 10.1177/0956797611409589. Epub 2011 May 17.
9
Evidence for early morphological decomposition: combining masked priming with magnetoencephalography.
J Cogn Neurosci. 2011 Nov;23(11):3366-79. doi: 10.1162/jocn_a_00035. Epub 2011 May 10.
10
Semantic transparency and masked morphological priming: the case of prefixed words.
Mem Cognit. 2009 Sep;37(6):895-908. doi: 10.3758/MC.37.6.895.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验