Suppr超能文献

基于朴素判别学习的视觉理解中形态处理的无定形模型。

An amorphous model for morphological processing in visual comprehension based on naive discriminative learning.

机构信息

Department of Linguistics.

Department of Psychology, University of Novi Sad.

出版信息

Psychol Rev. 2011 Jul;118(3):438-481. doi: 10.1037/a0023851.

Abstract

A 2-layer symbolic network model based on the equilibrium equations of the Rescorla-Wagner model (Danks, 2003) is proposed. The study first presents 2 experiments in Serbian, which reveal for sentential reading the inflectional paradigmatic effects previously observed by Milin, Filipović Đurđević, and Moscoso del Prado Martín (2009) for unprimed lexical decision. The empirical results are successfully modeled without having to assume separate representations for inflections or data structures such as inflectional paradigms. In the next step, the same naive discriminative learning approach is pitted against a wide range of effects documented in the morphological processing literature. Frequency effects for complex words as well as for phrases (Arnon & Snider, 2010) emerge in the model without the presence of whole-word or whole-phrase representations. Family size effects (Moscoso del Prado Martín, Bertram, Häikiö, Schreuder, & Baayen, 2004; Schreuder & Baayen, 1997) emerge in the simulations across simple words, derived words, and compounds, without derived words or compounds being represented as such. It is shown that for pseudo-derived words no special morpho-orthographic segmentation mechanism, as posited by Rastle, Davis, and New (2004), is required. The model also replicates the finding of Plag and Baayen (2009) that, on average, words with more productive affixes elicit longer response latencies; at the same time, it predicts that productive affixes afford faster response latencies for new words. English phrasal paradigmatic effects modulating isolated word reading are reported and modeled, showing that the paradigmatic effects characterizing Serbian case inflection have crosslinguistic scope.

摘要

提出了一种基于 Rescorla-Wagner 模型平衡方程的双层符号网络模型(Danks, 2003)。该研究首先在塞尔维亚语中进行了 2 项实验,揭示了在未启动的词汇决策中,Milin、Filipović Đurđević 和 Moscoso del Prado Martín(2009)观察到的屈折形态效应。实证结果无需假设单独的屈折或数据结构(如屈折形态)表示,即可成功建模。在下一步中,相同的朴素判别学习方法与形态处理文献中记录的广泛影响进行了对比。复杂词和短语的频率效应(Arnon & Snider, 2010)在模型中出现,而无需出现整词或整短语的表示。在简单词、派生词和复合词中,都出现了家族大小效应(Moscoso del Prado Martín、Bertram、Häikiö、Schreuder 和 Baayen, 2004; Schreuder 和 Baayen, 1997),而无需将派生词或复合词作为特殊的词表示。结果表明,对于伪派生词,不需要像 Rastle、Davis 和 New(2004)所假设的那样,具有特殊的形态-正字法分割机制。该模型还复制了 Plag 和 Baayen(2009)的发现,即平均而言,具有更多生产性词缀的词会产生更长的反应时;同时,它预测生产性词缀会为新单词提供更快的反应时。报告并模拟了英语短语形态学效应,调节孤立词阅读,表明了特征塞尔维亚格屈折的形态学效应具有跨语言范围。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验