Agyekum Dominic V A, Dastogeer Khondoker M G, Okazaki Shin
United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Fuchu, Japan.
Microbiome Research Lab, Department of Plant Pathology, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh.
BMC Plant Biol. 2025 Apr 24;25(1):520. doi: 10.1186/s12870-025-06566-y.
Nature farming, a sustainable agricultural method which avoids agrochemicals and untreated organic amendments, promotes both agricultural productivity and ecological conservation. This system may foster unique plant-microbiota interactions for growth and fitness; however, the microbiota of nature-farmed plants remains largely unexplored. Second, root nodule symbiosis (RNS) is crucial for nitrogen fixation in legumes; however, its broader impact on rhizosphere microbiota assembly is not well understood. This study examined the dynamics between impaired nodule symbiosis, soil management, and the rhizosphere microbiota composition and growth of soybean (Glycine max L.).
We evaluated the growth and characterized the rhizosphere bacterial and fungal communities of soybean by comparing wildtype soybeans (Enrei) with the non-nodulating mutants (En1282) across four soils under conventional and nature farming, including fumigated and unfumigated conditions. We found that the non-nodulating soybean mutants (En1282) exhibited reduced growth compared with wild-type (Enrei) plants, especially in untreated soils. Soil fumigation decreased microbial diversity and reshaped rhizosphere community composition with a significant reduction in plant growth and nodulation in all soils. Restriction in RNS increased bacterial diversity in untreated soils, possibly as a compensatory mechanism for nitrogen acquisition, whereas fungal diversity remained relatively stable. Nature farming promoted beneficial microbes like Rhizobium, Trichoderma, and Chloridium, whereas conventional soil plants favored Bacillus and Aspergillus. Notably, differential enrichment analysis identified distinct associations for each nodulation phenotype, with Enrei predominantly enriched for Pseudomonas, and En1282 associated primarily with oligotrophic microbes.
Our study sheds light on the complex interplay between legume symbiosis and rhizosphere microbiota assembly and highlights the significance of eco-friendly farming methods like nature farming in cultivating a healthy rhizosphere for plant growth. The results paves way for future strategies to manipulate rhizosphere microbiota, ultimately promoting robust and sustainable farming systems that reduce reliance on chemical inputs.
自然农法是一种可持续的农业方法,它避免使用农用化学品和未经处理的有机改良剂,既能提高农业生产力又能促进生态保护。该系统可能促进独特的植物-微生物群相互作用以实现生长和健康;然而,自然种植植物的微生物群在很大程度上仍未得到充分研究。其次,根瘤共生(RNS)对豆科植物的固氮至关重要;然而,其对根际微生物群组装的更广泛影响尚未得到很好的理解。本研究考察了受损根瘤共生、土壤管理与大豆(Glycine max L.)根际微生物群组成及生长之间的动态关系。
我们通过比较野生型大豆(Enrei)和非结瘤突变体(En1282)在常规和自然农法下的四种土壤(包括熏蒸和未熏蒸条件)中的生长情况,并对其根际细菌和真菌群落进行了表征。我们发现,与野生型(Enrei)植株相比,非结瘤大豆突变体(En1282)的生长受到抑制,尤其是在未处理的土壤中。土壤熏蒸降低了微生物多样性并重塑了根际群落组成,所有土壤中的植物生长和结瘤均显著减少。未处理土壤中RNS的受限增加了细菌多样性,这可能是一种氮获取的补偿机制,而真菌多样性保持相对稳定。自然农法促进了根瘤菌、木霉属和绿杯菌属等有益微生物的生长,而传统土壤种植的植物则有利于芽孢杆菌属和曲霉属。值得注意的是,差异富集分析确定了每种结瘤表型的不同关联,Enrei主要富集假单胞菌属,而En1282主要与贫营养微生物相关。
我们的研究揭示了豆科植物共生与根际微生物群组装之间的复杂相互作用,并强调了自然农法等生态友好型耕作方法在培育健康根际以促进植物生长方面的重要性。这些结果为未来操纵根际微生物群的策略铺平了道路,最终促进减少对化学投入物依赖的稳健和可持续耕作系统。