Suppr超能文献

H3K9me3 异染色质在细胞身份建立和维持中的作用。

Role of H3K9me3 heterochromatin in cell identity establishment and maintenance.

机构信息

Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA; Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA; Dept. Cell and Developmental, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA.

Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA; Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA; Dept. Cell and Developmental, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA.

出版信息

Curr Opin Genet Dev. 2019 Apr;55:1-10. doi: 10.1016/j.gde.2019.04.013. Epub 2019 May 16.

Abstract

Compacted, transcriptionally repressed chromatin, referred to as heterochromatin, represents a major fraction of the higher eukaryotic genome and exerts pivotal functions of silencing repetitive elements, maintenance of genome stability, and control of gene expression. Among the different histone post-translational modifications (PTMs) associated with heterochromatin, tri-methylation of lysine 9 on histone H3 (H3K9me3) is gaining increased attention. Besides its known role in repressing repetitive elements and non-coding portions of the genome, recent observations indicate H3K9me3 as an important player in silencing lineage-inappropriate genes. The ability of H3K9me3 to influence cell identity challenges the original concept of H3K9me3-marked heterochromatin as mainly a constitutive type of chromatin and provides a further level of understanding of how to modulate cell fate control. Here, we summarize the role of H3K9me3 marked heterochromatin and its dynamics in establishing and maintaining cellular identity.

摘要

压缩的、转录抑制的染色质,称为异染色质,代表了真核生物基因组的主要部分,并发挥着沉默重复元件、维持基因组稳定性和控制基因表达的关键功能。在与异染色质相关的不同组蛋白翻译后修饰(PTMs)中,组蛋白 H3 赖氨酸 9 的三甲基化(H3K9me3)受到越来越多的关注。除了其在抑制重复元件和基因组非编码部分的已知作用外,最近的观察表明 H3K9me3 是沉默谱系不当基因的重要参与者。H3K9me3 影响细胞身份的能力挑战了 H3K9me3 标记异染色质主要是组成型染色质的原始概念,并提供了进一步理解如何调节细胞命运控制的水平。在这里,我们总结了 H3K9me3 标记异染色质及其在建立和维持细胞身份中的动态变化的作用。

相似文献

1
Role of H3K9me3 heterochromatin in cell identity establishment and maintenance.
Curr Opin Genet Dev. 2019 Apr;55:1-10. doi: 10.1016/j.gde.2019.04.013. Epub 2019 May 16.
2
H3K9me3-Dependent Heterochromatin: Barrier to Cell Fate Changes.
Trends Genet. 2016 Jan;32(1):29-41. doi: 10.1016/j.tig.2015.11.001. Epub 2015 Dec 8.
3
Reprogramming of H3K9me3-dependent heterochromatin during mammalian embryo development.
Nat Cell Biol. 2018 May;20(5):620-631. doi: 10.1038/s41556-018-0093-4. Epub 2018 Apr 23.
4
The control of gene expression and cell identity by H3K9 trimethylation.
Development. 2019 Sep 20;146(19):dev181180. doi: 10.1242/dev.181180.
5
H3K9me3-heterochromatin loss at protein-coding genes enables developmental lineage specification.
Science. 2019 Jan 18;363(6424):294-297. doi: 10.1126/science.aau0583. Epub 2019 Jan 3.
6
The molecular basis of heterochromatin assembly and epigenetic inheritance.
Mol Cell. 2023 Jun 1;83(11):1767-1785. doi: 10.1016/j.molcel.2023.04.020. Epub 2023 May 18.
7
Histone H3 lysine 4 methyltransferase is required for facultative heterochromatin at specific loci.
BMC Genomics. 2019 May 8;20(1):350. doi: 10.1186/s12864-019-5729-7.
8
SETDB1/NSD-dependent H3K9me3/H3K36me3 dual heterochromatin maintains gene expression profiles by bookmarking poised enhancers.
Mol Cell. 2022 Feb 17;82(4):816-832.e12. doi: 10.1016/j.molcel.2021.12.037. Epub 2022 Jan 25.
9
Induction of H3K9me3 and DNA methylation by tethered heterochromatin factors in .
Proc Natl Acad Sci U S A. 2017 Nov 7;114(45):E9598-E9607. doi: 10.1073/pnas.1715049114. Epub 2017 Oct 23.
10
Direct readout of heterochromatic H3K9me3 regulates DNMT1-mediated maintenance DNA methylation.
Proc Natl Acad Sci U S A. 2020 Aug 4;117(31):18439-18447. doi: 10.1073/pnas.2009316117. Epub 2020 Jul 16.

引用本文的文献

1
A Biophysics of Epigenetic Rejuvenation.
Cells. 2025 Aug 13;14(16):1249. doi: 10.3390/cells14161249.
3
A SETD2-CDK1-lamin axis maintains nuclear morphology and genome stability.
Nat Cell Biol. 2025 Aug;27(8):1327-1341. doi: 10.1038/s41556-025-01723-9. Epub 2025 Aug 11.
5
MGA directly recruits SETDB1/ATF7IP for histone H3K9me3 mark on meiosis-related genes in mouse embryonic stem cells.
iScience. 2025 Jul 5;28(8):113059. doi: 10.1016/j.isci.2025.113059. eCollection 2025 Aug 15.
6
Hispidulin: a potential alternative to vorinostat against HDAC1 for acute myeloid leukemia.
Discov Oncol. 2025 Jul 22;16(1):1389. doi: 10.1007/s12672-025-03182-y.
7
TRIM33 loss reduces androgen receptor transcriptional output and H2BK120 ubiquitination.
Commun Biol. 2025 Jul 11;8(1):1043. doi: 10.1038/s42003-025-08449-2.
8
Arsenic disrupts H3K9me3 and H3K27me3 balance by biasing PRC2.1 and PRC2.2 activity via PALI1 inhibition in carcinogenesis.
Int J Biol Sci. 2025 Jun 9;21(9):4069-4080. doi: 10.7150/ijbs.115605. eCollection 2025.
9
Endocrine-disrupting chemicals (EDCs) and epigenetic regulation in embryonic development: Mechanisms, impacts, and emerging trends.
Toxicol Rep. 2024 Dec 27;14:101885. doi: 10.1016/j.toxrep.2024.101885. eCollection 2025 Jun.

本文引用的文献

2
H3K9me3-heterochromatin loss at protein-coding genes enables developmental lineage specification.
Science. 2019 Jan 18;363(6424):294-297. doi: 10.1126/science.aau0583. Epub 2019 Jan 3.
3
Heterochromatin: Guardian of the Genome.
Annu Rev Cell Dev Biol. 2018 Oct 6;34:265-288. doi: 10.1146/annurev-cellbio-100617-062653. Epub 2018 Jul 25.
4
Chromatin domains rich in inheritance.
Science. 2018 Jul 6;361(6397):33-34. doi: 10.1126/science.aat7871.
5
Reprogramming of H3K9me3-dependent heterochromatin during mammalian embryo development.
Nat Cell Biol. 2018 May;20(5):620-631. doi: 10.1038/s41556-018-0093-4. Epub 2018 Apr 23.
6
The Role of Phase Separation in Heterochromatin Formation, Function, and Regulation.
Biochemistry. 2018 May 1;57(17):2540-2548. doi: 10.1021/acs.biochem.8b00401. Epub 2018 Apr 23.
7
Cloning of Macaque Monkeys by Somatic Cell Nuclear Transfer.
Cell. 2018 Feb 8;172(4):881-887.e7. doi: 10.1016/j.cell.2018.01.020. Epub 2018 Feb 1.
8
The epigenetic control of stemness in CD8 T cell fate commitment.
Science. 2018 Jan 12;359(6372):177-186. doi: 10.1126/science.aah6499.
9
Genomic and Proteomic Resolution of Heterochromatin and Its Restriction of Alternate Fate Genes.
Mol Cell. 2017 Dec 21;68(6):1023-1037.e15. doi: 10.1016/j.molcel.2017.11.030.
10
Ten principles of heterochromatin formation and function.
Nat Rev Mol Cell Biol. 2018 Apr;19(4):229-244. doi: 10.1038/nrm.2017.119. Epub 2017 Dec 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验