Molecular & Cell Biophysics Laboratory, University of Pennsylvania, Philadelphia, PA 19104, USA.
Orthopaedic Surgery and Cell & Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
Dev Cell. 2019 Jun 17;49(6):920-935.e5. doi: 10.1016/j.devcel.2019.04.020. Epub 2019 May 16.
Whether cell forces or extracellular matrix (ECM) can impact genome integrity is largely unclear. Here, acute perturbations (∼1 h) to actomyosin stress or ECM elasticity cause rapid and reversible changes in lamin-A, DNA damage, and cell cycle. The findings are especially relevant to organs such as the heart because DNA damage permanently arrests cardiomyocyte proliferation shortly after birth and thereby eliminates regeneration after injury including heart attack. Embryonic hearts, cardiac-differentiated iPS cells (induced pluripotent stem cells), and various nonmuscle cell types all show that actomyosin-driven nuclear rupture causes cytoplasmic mis-localization of DNA repair factors and excess DNA damage. Binucleation and micronuclei increase as telomeres shorten, which all favor cell-cycle arrest. Deficiencies in lamin-A and repair factors exacerbate these effects, but lamin-A-associated defects are rescued by repair factor overexpression and also by contractility modulators in clinical trials. Contractile cells on stiff ECM normally exhibit low phosphorylation and slow degradation of lamin-A by matrix-metalloprotease-2 (MMP2), and inhibition of this lamin-A turnover and also actomyosin contractility are seen to minimize DNA damage. Lamin-A is thus stress stabilized to mechano-protect the genome.
细胞力或细胞外基质(ECM)是否能影响基因组完整性在很大程度上并不清楚。在这里,肌动球蛋白应激或 ECM 弹性的急性扰动(约 1 小时)会导致核层蛋白 A、DNA 损伤和细胞周期的快速和可逆变化。这些发现与心脏等器官尤其相关,因为 DNA 损伤会在出生后不久永久性地阻止心肌细胞的增殖,从而消除包括心脏病发作在内的损伤后的再生。胚胎心脏、心肌分化的 iPS 细胞(诱导多能干细胞)和各种非肌肉细胞类型都表明,肌动球蛋白驱动的核破裂导致细胞质中 DNA 修复因子的错误定位和过多的 DNA 损伤。随着端粒缩短,双核和微核增加,这都有利于细胞周期停滞。核层蛋白 A 和修复因子的缺乏会加剧这些影响,但修复因子的过表达以及临床试验中的收缩性调节剂可以挽救核层蛋白 A 相关缺陷。在坚硬的 ECM 上的收缩细胞通常表现出低磷酸化和基质金属蛋白酶 2(MMP2)对核层蛋白 A 的缓慢降解,抑制这种核层蛋白 A 周转和肌动球蛋白收缩性可最大限度地减少 DNA 损伤。因此,核层蛋白 A 被机械稳定以保护基因组。