Deng Kaiyu, Szczecinski Nicholas S, Arnold Dirk, Andrada Emanuel, Fischer Martin S, Quinn Roger D, Hunt Alexander J
Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, OH 44106, USA.
Institute of Zoology and Evolutionary Research, Friedrich-Schiller University Jena, Erbertstr. 1, 07743 Jena, Germany.
Biomimetics (Basel). 2019 Mar 1;4(1):21. doi: 10.3390/biomimetics4010021.
This work demonstrates a neuromechanical model of rat hindlimb locomotion undergoing nominal walking with perturbations. In the animal, two types of responses to perturbations are observed: resetting and non-resetting deletions. This suggests that the animal locomotor system contains a memory-like organization. To model this phenomenon, we built a synthetic nervous system that uses separate rhythm generator and pattern formation layers to activate antagonistic muscle pairs about each joint in the sagittal plane. Our model replicates the resetting and non-resetting deletions observed in the animal. In addition, in the intact (i.e., fully afferented) rat walking simulation, we observe slower recovery after perturbation, which is different from the deafferented animal experiment. These results demonstrate that our model is a biologically feasible description of some of the neural circuits in the mammalian spinal cord that control locomotion, and the difference between our simulation and fictive motion shows the importance of sensory feedback on motor output. This model also demonstrates how the pattern formation network can activate muscle synergies in a coordinated way to produce stable walking, which motivates the use of more complex synergies activating more muscles in the legs for three-dimensional limb motion.
这项研究展示了一个大鼠后肢运动的神经力学模型,该模型模拟了在受到扰动的情况下进行正常行走的过程。在动物实验中,观察到了两种对扰动的反应:重置和非重置缺失。这表明动物的运动系统包含一种类似记忆的组织。为了模拟这一现象,我们构建了一个合成神经系统,该系统使用独立的节律发生器和模式形成层来激活矢状面中每个关节周围的拮抗肌对。我们的模型复制了在动物实验中观察到的重置和非重置缺失现象。此外,在完整(即完全传入)大鼠行走模拟中,我们观察到扰动后恢复较慢,这与去传入神经动物实验不同。这些结果表明,我们的模型是对哺乳动物脊髓中控制运动的一些神经回路的生物学上可行的描述,并且我们的模拟与虚拟运动之间的差异表明了感觉反馈对运动输出的重要性。该模型还展示了模式形成网络如何以协调的方式激活肌肉协同作用以产生稳定的行走,这促使我们使用更复杂的协同作用来激活腿部更多的肌肉以实现三维肢体运动。