Suppr超能文献

二甲双胍通过抑制Th1和Th17反应,同时促进调节性T细胞(Treg)生成,从而减轻自身免疫性胰岛炎。

Metformin mitigates autoimmune insulitis by inhibiting Th1 and Th17 responses while promoting Treg production.

作者信息

Duan Wu, Ding Yunchuan, Yu Xuefeng, Ma Dongxia, Yang Bo, Li Yi, Huang Li, Chen Zhonghua, Zheng Junmeng, Yang Chao

机构信息

Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan, China.

Department of Allergy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan, China.

出版信息

Am J Transl Res. 2019 Apr 15;11(4):2393-2402. eCollection 2019.

Abstract

Type 1 diabetes mellitus (T1DM) is still one of the major threats on global public health. This autoimmune condition is mainly caused by the imbalance of auto-reactive inflammatory effector T cells (Teffs) and protective regulatory T cells (Tregs). Therefore, inhibiting the development of Teffs and/or promoting Tregs provides a therapeutic strategy for preventing the development of T1DM. Pathways of energy metabolism have been shown to play a pivotal role in dictating the activation, differentiation and immune function of T cells. Studies have shown that inhibition of glycolysis suppresses the development of Th1 and Th17 cells, but promotes Treg production. AMP-activated protein kinase (AMPK) is a master sensor and regulator of cellular energy metabolism in mammals, which has also been demonstrated to interfere with T cell differentiation and effector function through inhibiting mammalian target of rapamycin (mTOR) and subsequent inhibition of glycolysis, and enhancement of lipid oxidation. In this study, we found that AMPK activator metformin suppresses T cell proliferation and inhibits the differentiation of Th1 and Th17 cells while promoting the development of Tregs in vitro in a dose-dependent manner. Treatment of NOD mice with metformin significantly mitigated autoimmune insulitis and substantially decreased the number of pro-inflammatory IFN-γ+ as well as IL17+ CD4 T cells in the spleens of NOD mice. However, a significantly increased percentage of regulatory IL-10+ and Foxp3+ CD4 T cells were seen. We provided a novel potential therapeutic method--by regulating T cell metabolism through targeting AMPK, to reduce the severity of autoimmune insulitis.

摘要

1型糖尿病(T1DM)仍然是全球公共卫生面临的主要威胁之一。这种自身免疫性疾病主要由自身反应性炎性效应T细胞(Teffs)和保护性调节性T细胞(Tregs)的失衡引起。因此,抑制Teffs的发育和/或促进Tregs的发育为预防T1DM的发展提供了一种治疗策略。能量代谢途径已被证明在决定T细胞的激活、分化和免疫功能方面起着关键作用。研究表明,抑制糖酵解可抑制Th1和Th17细胞的发育,但可促进Treg的产生。AMP激活的蛋白激酶(AMPK)是哺乳动物细胞能量代谢的主要传感器和调节因子,也已被证明可通过抑制雷帕霉素靶蛋白(mTOR),随后抑制糖酵解并增强脂质氧化来干扰T细胞分化和效应功能。在本研究中,我们发现AMPK激活剂二甲双胍在体外以剂量依赖的方式抑制T细胞增殖,抑制Th1和Th17细胞的分化,同时促进Tregs的发育。用二甲双胍治疗非肥胖糖尿病(NOD)小鼠可显著减轻自身免疫性胰岛炎,并大幅减少NOD小鼠脾脏中促炎性IFN-γ+以及IL17+ CD4 T细胞的数量。然而,调节性IL-10+和Foxp3+ CD4 T细胞的百分比显著增加。我们提供了一种新的潜在治疗方法——通过靶向AMPK调节T细胞代谢,以减轻自身免疫性胰岛炎的严重程度。

相似文献

3
Thymol as a reciprocal regulator of T cell differentiation: Promotion of regulatory T cells and suppression of Th1/Th17 cells.
Int Immunopharmacol. 2019 Feb;67:417-426. doi: 10.1016/j.intimp.2018.12.021. Epub 2018 Dec 31.
4
Total coumarins from Urtica dentata Hand prevent murine autoimmune diabetes via suppression of the TLR4-signaling pathways.
J Ethnopharmacol. 2013 Mar 7;146(1):379-92. doi: 10.1016/j.jep.2013.01.009. Epub 2013 Jan 20.
5
Green tea EGCG, T cells, and T cell-mediated autoimmune diseases.
Mol Aspects Med. 2012 Feb;33(1):107-18. doi: 10.1016/j.mam.2011.10.001. Epub 2011 Oct 14.
6
The Imbalance between Foxp3Tregs and Th1/Th17/Th22 Cells in Patients with Newly Diagnosed Autoimmune Hepatitis.
J Immunol Res. 2018 Jun 27;2018:3753081. doi: 10.1155/2018/3753081. eCollection 2018.
7
Interplay between mTOR and STAT5 signaling modulates the balance between regulatory and effective T cells.
Immunobiology. 2015 Apr;220(4):510-7. doi: 10.1016/j.imbio.2014.10.020. Epub 2014 Oct 31.
8
IFN-γ induced by IL-12 administration prevents diabetes by inhibiting pathogenic IL-17 production in NOD mice.
J Autoimmun. 2012 Feb;38(1):20-8. doi: 10.1016/j.jaut.2011.11.017. Epub 2011 Dec 18.

引用本文的文献

1
The role of autophagy in the pathogenesis and treatment of multiple sclerosis.
Autophagy Rep. 2025 Jul 22;4(1):2529196. doi: 10.1080/27694127.2025.2529196. eCollection 2025.
2
Metabolic regulation of Th17 and Treg cell balance by the mTOR signaling.
Metabol Open. 2025 May 9;26:100369. doi: 10.1016/j.metop.2025.100369. eCollection 2025 Jun.
5
AMPK is necessary for Treg functional adaptation to microenvironmental stress during malignancy and viral pneumonia.
J Clin Invest. 2025 Mar 18;135(9). doi: 10.1172/JCI179572. eCollection 2025 May 1.
6
Metformin-based nanomedicines for reprogramming tumor immune microenvironment.
Theranostics. 2025 Jan 1;15(3):993-1016. doi: 10.7150/thno.104872. eCollection 2025.
7
Metformin in Antiviral Therapy: Evidence and Perspectives.
Viruses. 2024 Dec 18;16(12):1938. doi: 10.3390/v16121938.
8
Low-Dose Metformin and Profibrotic Signature in Central Centrifugal Cicatricial Alopecia.
JAMA Dermatol. 2024 Nov 1;160(11):1211-1219. doi: 10.1001/jamadermatol.2024.3062.
10
Sweet regulation - The emerging immunoregulatory roles of hexoses.
J Adv Res. 2025 Mar;69:361-379. doi: 10.1016/j.jare.2024.04.014. Epub 2024 Apr 15.

本文引用的文献

1
The role of AMPK in T cell metabolism and function.
Curr Opin Immunol. 2017 Jun;46:45-52. doi: 10.1016/j.coi.2017.04.004. Epub 2017 Apr 28.
2
AMPK signalling in health and disease.
Curr Opin Cell Biol. 2017 Apr;45:31-37. doi: 10.1016/j.ceb.2017.01.005. Epub 2017 Feb 21.
3
6
MicroRNA-29b modulates innate and antigen-specific immune responses in mouse models of autoimmunity.
PLoS One. 2014 Sep 9;9(9):e106153. doi: 10.1371/journal.pone.0106153. eCollection 2014.
7
Fueling immunity: insights into metabolism and lymphocyte function.
Science. 2013 Oct 11;342(6155):1242454. doi: 10.1126/science.1242454.
8
Metabolic pathways in immune cell activation and quiescence.
Immunity. 2013 Apr 18;38(4):633-43. doi: 10.1016/j.immuni.2013.04.005.
9
Metabolic regulation of T lymphocytes.
Annu Rev Immunol. 2013;31:259-83. doi: 10.1146/annurev-immunol-032712-095956. Epub 2013 Jan 3.
10
AMP-activated protein kinase regulation and biological actions in the heart.
Circ Res. 2012 Aug 31;111(6):800-14. doi: 10.1161/CIRCRESAHA.111.255505.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验