Suppr超能文献

机器学习一种键序势模型以研究WSe纳米结构中的热输运。

Machine learning a bond order potential model to study thermal transport in WSe nanostructures.

作者信息

Chan Henry, Sasikumar Kiran, Srinivasan Srilok, Cherukara Mathew, Narayanan Badri, Sankaranarayanan Subramanian K R S

机构信息

Center for Nanoscale Materials, Argonne National Laboratory, Argonne IL, USA.

出版信息

Nanoscale. 2019 May 30;11(21):10381-10392. doi: 10.1039/c9nr02873k.

Abstract

Nanostructures of transition metal di-chalcogenides (TMDCs) exhibit exotic thermal, chemical and electronic properties, enabling diverse applications from thermoelectrics and catalysis to nanoelectronics. The thermal properties of these nanoscale TMDCs are of particular interest for thermoelectric applications. Thermal transport studies on nanotubes and nanoribbons remain intractable to first principles calculations whereas existing classical molecular models treat the two chalcogen layers in a monolayer with different atom types; this imposes serious limitations in studying multi-layered TMDCs and dynamical phenomena such as nucleation and growth. Here, we overcome these limitations using machine learning (ML) and introduce a bond order potential (BOP) trained against first principles training data to capture the structure, dynamics, and thermal transport properties of a model TMDC such as WSe2. The training is performed using a hierarchical objective genetic algorithm workflow to accurately describe the energetics, as well as thermal and mechanical properties of a free-standing sheet. As a representative case study, we perform molecular dynamics simulations using the ML-BOP model to study the structure and temperature-dependent thermal conductivity of WSe2 tubes and ribbons of different chiralities. We observe slightly higher thermal conductivities along the armchair direction than zigzag for WSe2 monolayers but the opposite effect for nanotubes, especially of smaller diameters. We trace the origin of these differences to the anisotropy in thermal transport and the restricted momentum selection rules for phonon-phonon Umpklapp scattering. The developed ML-BOP model is of broad interest and will facilitate studies on nucleation and growth of low dimensional WSe2 structures as well as their transport properties for thermoelectric and thermal management applications.

摘要

过渡金属二硫属化物(TMDCs)的纳米结构展现出奇异的热、化学和电子特性,使得从热电学、催化到纳米电子学等领域都有了多样化的应用。这些纳米级TMDCs的热特性在热电应用中尤为引人关注。对纳米管和纳米带的热输运研究对于第一性原理计算来说仍然难以处理,而现有的经典分子模型将单层中的两个硫属元素层视为具有不同原子类型;这在研究多层TMDCs以及诸如成核和生长等动力学现象时带来了严重限制。在此,我们利用机器学习(ML)克服了这些限制,并引入了一种针对第一性原理训练数据训练的键序势(BOP),以捕捉诸如WSe2等模型TMDC的结构、动力学和热输运特性。使用分层目标遗传算法工作流程进行训练,以准确描述独立薄片的能量以及热和机械特性。作为一个具有代表性的案例研究,我们使用ML - BOP模型进行分子动力学模拟,以研究不同手性的WSe2管和带的结构以及与温度相关的热导率。我们观察到,对于WSe2单层,沿扶手椅方向的热导率略高于锯齿方向,但对于纳米管,尤其是较小直径的纳米管,情况则相反。我们将这些差异的根源追溯到热输运的各向异性以及声子 - 声子Umklapp散射的受限动量选择规则。所开发的ML - BOP模型具有广泛的意义,将有助于研究低维WSe2结构的成核和生长及其在热电和热管理应用中的输运特性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验