Easy Elham, Gao Yuan, Wang Yingtao, Yan Dingkai, Goushehgir Seyed M, Yang Eui-Hyeok, Xu Baoxing, Zhang Xian
Department of Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, Virginia 22904, United States.
Department of Mechanical Engineering, Urmia University of Technology, Urmia, West Azerbaijan, Iran.
ACS Appl Mater Interfaces. 2021 Mar 24;13(11):13063-13071. doi: 10.1021/acsami.0c21045. Epub 2021 Mar 15.
Two-dimensional materials such as graphene and transition metal dichalcogenides (TMDCs) have received extensive research interest and investigations in the past decade. In this research, we used a refined opto-thermal Raman technique to explore the thermal transport properties of one popular TMDC material WSe, in the single-layer (1L), bilayer (2L), and trilayer (3L) forms. This measurement technique is direct without additional processing to the material, and the absorption coefficient of WSe is discovered during the measurement process to further increase this technique's precision. By comparing the sample's Raman spectroscopy spectra through two different laser spot sizes, we are able to obtain two parameters-lateral thermal conductivities of 1L-3L WSe and the interfacial thermal conductance between 1L-3L WSe and the substrate. We also implemented full-atom nonequilibrium molecular dynamics simulations (NEMD) to computationally investigate the thermal conductivities of 1L-3L WSe to provide comprehensive evidence and confirm the experimental results. The trend of the layer-dependent lateral thermal conductivities and interfacial thermal conductance of 1L-3L WSe is discovered. The room-temperature thermal conductivities for 1L-3L WSe are 37 ± 12, 24 ± 12, and 20 ± 6 W/(m·K), respectively. The suspended 1L WSe possesses a thermal conductivity of 49 ± 14 W/(m·K). Crucially, the interfacial thermal conductance values between 1L-3L WSe and the substrate are found to be 2.95 ± 0.46, 3.45 ± 0.50, and 3.46 ± 0.45 MW/(m·K), respectively, with a flattened trend starting the 2L, a finding that provides the key information for thermal management and thermoelectric designs.
在过去十年中,石墨烯和过渡金属二硫属化物(TMDCs)等二维材料受到了广泛的研究关注和研究。在本研究中,我们使用了一种改进的光热拉曼技术来探索一种流行的TMDC材料WSe在单层(1L)、双层(2L)和三层(3L)形式下的热输运特性。这种测量技术是直接的,无需对材料进行额外处理,并且在测量过程中发现了WSe的吸收系数,以进一步提高该技术的精度。通过比较两种不同激光光斑尺寸下样品的拉曼光谱,我们能够获得两个参数——1L - 3L WSe的横向热导率以及1L - 3L WSe与衬底之间的界面热导率。我们还进行了全原子非平衡分子动力学模拟(NEMD),以通过计算研究1L - 3L WSe的热导率,从而提供全面的证据并确认实验结果。发现了1L - 3L WSe的层依赖横向热导率和界面热导率的趋势。1L - 3L WSe在室温下的热导率分别为37±12、24±12和20±6 W/(m·K)。悬浮的1L WSe的热导率为49±14 W/(m·K)。至关重要的是,发现1L - 3L WSe与衬底之间的界面热导率值分别为2.95±0.46、3.45±0.50和3.46±0.45 MW/(m·K),从2L开始呈现出平缓趋势,这一发现为热管理和热电设计提供了关键信息。