Suppr超能文献

评估和增强基于原始加速度数据的体力活动强度预测机器学习模型的泛化性能。

Evaluating and Enhancing the Generalization Performance of Machine Learning Models for Physical Activity Intensity Prediction From Raw Acceleration Data.

出版信息

IEEE J Biomed Health Inform. 2020 Jan;24(1):27-38. doi: 10.1109/JBHI.2019.2917565. Epub 2019 May 20.

Abstract

PURPOSE

To evaluate and enhance the generalization performance of machine learning physical activity intensity prediction models developed with raw acceleration data on populations monitored by different activity monitors.

METHOD

Five datasets from four studies, each containing only hip- or wrist-based raw acceleration data (two hip- and three wrist-based) were extracted. The five datasets were then used to develop and validate artificial neural networks (ANN) in three setups to classify activity intensity categories (sedentary behavior, light, and moderate-to-vigorous). To examine generalizability, the ANN models were developed using within dataset (leave-one-subject-out) cross validation, and then cross tested to other datasets with different accelerometers. To enhance the models' generalizability, a combination of four of the five datasets was used for training and the fifth dataset for validation. Finally, all the five datasets were merged to develop a single model that is generalizable across the datasets (50% of the subjects from each dataset for training, the remaining for validation).

RESULTS

The datasets showed high performance in within dataset cross validation (accuracy 71.9-95.4%, Kappa K = 0.63-0.94). The performance of the within dataset validated models decreased when applied to datasets with different accelerometers (41.2-59.9%, K = 0.21-0.48). The trained models on merged datasets consisting hip and wrist data predicted the left-out dataset with acceptable performance (65.9-83.7%, K = 0.61-0.79). The model trained with all five datasets performed with acceptable performance across the datasets (80.4-90.7%, K = 0.68-0.89).

CONCLUSIONS

Integrating heterogeneous datasets in training sets seems a viable approach for enhancing the generalization performance of the models. Instead, within dataset validation is not sufficient to understand the models' performance on other populations with different accelerometers.

摘要

目的

评估和提高基于原始加速度数据开发的机器学习体力活动强度预测模型在不同活动监测器监测人群中的泛化性能。

方法

从四项研究中提取了五个仅包含髋部或腕部原始加速度数据的数据集(两个髋部和三个腕部)。然后,使用这五个数据集在三种设置中开发和验证人工神经网络(ANN),以对活动强度类别(久坐行为、轻度和中度至剧烈)进行分类。为了检验泛化能力,使用数据集内(留一受试者外)交叉验证开发 ANN 模型,然后交叉测试到具有不同加速度计的其他数据集。为了提高模型的泛化能力,使用四个数据集的组合进行训练,第五个数据集进行验证。最后,将所有五个数据集合并,开发一个可跨数据集通用的单一模型(每个数据集的 50%受试者用于训练,其余用于验证)。

结果

数据集在数据集内交叉验证中表现出较高的性能(准确性 71.9-95.4%,Kappa K = 0.63-0.94)。当应用于具有不同加速度计的数据集时,内部数据集验证模型的性能会降低(41.2-59.9%,K = 0.21-0.48)。由髋部和腕部数据组成的合并数据集训练的模型可以以可接受的性能预测遗漏数据集(65.9-83.7%,K = 0.61-0.79)。使用所有五个数据集训练的模型在整个数据集上的表现都具有可接受的性能(80.4-90.7%,K = 0.68-0.89)。

结论

在训练集中整合异构数据集似乎是增强模型泛化性能的可行方法。相反,数据集内验证不足以了解模型在具有不同加速度计的其他人群中的性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验