Suppr超能文献

AccNet24:一种用于在自由生活环境下根据腕部佩戴式加速度计数据对24小时活动行为进行分类的深度学习框架。

AccNet24: A deep learning framework for classifying 24-hour activity behaviours from wrist-worn accelerometer data under free-living environments.

作者信息

Farrahi Vahid, Muhammad Usman, Rostami Mehrdad, Oussalah Mourad

机构信息

Research Unit of Health Sciences and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland; Center of Machine Vision and Signal Analysis, Faculty of Information Technology and Electrical Engineering, University of Oulu, Oulu, Finland.

Center of Machine Vision and Signal Analysis, Faculty of Information Technology and Electrical Engineering, University of Oulu, Oulu, Finland.

出版信息

Int J Med Inform. 2023 Apr;172:105004. doi: 10.1016/j.ijmedinf.2023.105004. Epub 2023 Jan 25.

Abstract

OBJECTIVE

Although machine learning techniques have been repeatedly used for activity prediction from wearable devices, accurate classification of 24-hour activity behaviour categories from accelerometry data remains a challenge. We developed and validated a deep learning-based framework for classifying 24-hour activity behaviours from wrist-worn accelerometers.

METHODS

Using an openly available dataset with free-living wrist-based raw accelerometry data from 151 participants (aged 18-91 years), we developed a deep learning framework named AccNet24 to classify 24-hour activity behaviours. First, the acceleration signal (x, y, and z-axes) was segmented into 30-second nonoverlapping windows, and signal-to-image conversion was performed for each segment. Deep features were automatically extracted from the signal images using transfer learning and transformed into a lower-dimensional feature space. These transformed features were then employed to classify the activity behaviours as sleep, sedentary behaviour, and light-intensity (LPA) and moderate-to-vigorous physical activity (MVPA) using a bidirectional long short-term memory (BiLSTM) recurrent neural network. AccNet24 was trained and validated with data from 101 and 25 randomly selected participants and tested with the remaining unseen 25 participants. We also extracted 112 hand-crafted time and frequency domain features from 30-second windows and used them as inputs to five commonly used machine learning classifiers, including random forest, support vector machines, artificial neural networks, decision tree, and naïve Bayes to classify the 24-hour activity behaviour categories.

RESULTS

Using the same training, validation, and test data and window size, the classification accuracy of AccNet24 outperformed the accuracy of the other five machine learning classification algorithms by 16%-30% on unseen data.

CONCLUSION

AccNet24, relying on signal-to-image conversion, deep feature extraction, and BiLSTM achieved consistently high accuracy (>95 %) in classifying the 24-hour activity behaviour categories as sleep, sedentary, LPA, and MVPA. The next generation accelerometry analytics may rely on deep learning techniques for activity prediction.

摘要

目的

尽管机器学习技术已被反复用于从可穿戴设备进行活动预测,但从加速度计数据准确分类24小时活动行为类别仍是一项挑战。我们开发并验证了一种基于深度学习的框架,用于从腕部佩戴的加速度计对24小时活动行为进行分类。

方法

利用一个公开可用的数据集,该数据集包含来自151名参与者(年龄在18 - 91岁之间)的基于手腕的自由生活原始加速度计数据,我们开发了一个名为AccNet24的深度学习框架来对24小时活动行为进行分类。首先,将加速度信号(x、y和z轴)分割成30秒不重叠的窗口,并对每个片段进行信号到图像的转换。使用迁移学习从信号图像中自动提取深度特征,并将其转换到低维特征空间。然后,利用双向长短期记忆(BiLSTM)递归神经网络将这些转换后的特征用于将活动行为分类为睡眠、久坐行为、轻度身体活动(LPA)和中度至剧烈身体活动(MVPA)。AccNet24使用来自101名和25名随机选择参与者的数据进行训练和验证,并使用其余25名未见过的参与者进行测试。我们还从30秒窗口中提取了112个手工制作的时域和频域特征,并将其用作五个常用机器学习分类器的输入,包括随机森林、支持向量机、人工神经网络、决策树和朴素贝叶斯,以对24小时活动行为类别进行分类。

结果

使用相同的训练、验证和测试数据以及窗口大小,AccNet24在未见数据上的分类准确率比其他五种机器学习分类算法的准确率高出16% - 30%。

结论

AccNet24依靠信号到图像转换、深度特征提取和BiLSTM,在将24小时活动行为类别分类为睡眠、久坐、LPA和MVPA方面始终实现了较高的准确率(>95%)。下一代加速度计分析可能依赖深度学习技术进行活动预测。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验