Suppr超能文献

钙磷酸盐纳米颗粒作为内在无机抗菌剂:寻找关键颗粒特性。

Calcium phosphate nanoparticles as intrinsic inorganic antimicrobials: In search of the key particle property.

机构信息

Department of Bioengineering, University of Illinois, Chicago, Illinois 60607-7052.

Advanced Materials and Nanobiotechnology Laboratory, Department of Biomedical and Pharmaceutical Sciences, Center for Targeted Drug Delivery, Chapman University, Irvine, California 92618-1908.

出版信息

Biointerphases. 2019 May 20;14(3):031001. doi: 10.1116/1.5090396.

Abstract

One of the main goals of materials science in the 21st century is the development of materials with rationally designed properties as substitutes for traditional pharmacotherapies. At the same time, there is a lack of understanding of the exact material properties that induce therapeutic effects in biological systems, which limits their rational optimization for the related medical applications. This study sets the foundation for a general approach for elucidating nanoparticle properties as determinants of antibacterial activity, with a particular focus on calcium phosphate nanoparticles. To that end, nine physicochemical effects were studied and a number of them were refuted, thus putting an end to frequently erred hypotheses in the literature. Rather than having one key particle property responsible for eliciting the antibacterial effect, a complex synergy of factors is shown to be at work, including (a) nanoscopic size; (b) elevated intracellular free calcium levels due to nanoparticle solubility; (c) diffusivity and favorable electrostatic properties of the nanoparticle surface, primarily low net charge and high charge density; and (d) the dynamics of perpetual exchange of ultrafine clusters across the particle/solution interface. On the positive side, this multifaceted mechanism is less prone to induce bacterial resistance to the therapy and can be a gateway to the sphere of personalized medicine. On a more problematic side, it implies a less intense effect compared to single-target molecular therapies and a difficulty of elucidating the exact mechanisms of action, while also making the rational design of theirs for this type of medical application a challenge.

摘要

二十一世纪材料科学的主要目标之一是开发具有合理设计性能的材料,以替代传统的药物疗法。同时,人们对确切的材料特性缺乏了解,这些特性会在生物系统中诱导治疗效果,从而限制了它们在相关医疗应用中的合理优化。本研究为阐明纳米颗粒特性作为抗菌活性决定因素的一般方法奠定了基础,特别关注磷酸钙纳米颗粒。为此,研究了九种物理化学效应,并驳斥了其中的一些效应,从而结束了文献中经常出现的错误假设。引起抗菌作用的并非是一个关键的颗粒特性,而是多种因素的协同作用,包括:(a) 纳米级尺寸;(b) 由于纳米颗粒的溶解度而导致细胞内游离钙水平升高;(c) 纳米颗粒表面的扩散性和有利的静电特性,主要是低净电荷和高电荷密度;以及 (d) 超细颗粒在颗粒/溶液界面上不断交换的动力学。从积极的方面来看,这种多方面的机制不太可能引起细菌对治疗的耐药性,并且可以成为个性化药物领域的一个切入点。更成问题的是,与单靶点分子疗法相比,它的效果较弱,阐明确切的作用机制也具有一定难度,同时也使得针对此类医疗应用进行合理设计具有一定挑战性。

相似文献

2
Calcium Phosphate Nanoparticles as Intrinsic Inorganic Antimicrobials: The Antibacterial Effect.
ACS Appl Mater Interfaces. 2018 Oct 10;10(40):34013-34028. doi: 10.1021/acsami.8b12784. Epub 2018 Sep 28.
3
Calcium phosphate nanoparticles as intrinsic inorganic antimicrobials: mechanism of action.
Biomed Mater. 2020 Dec 12;16(1):015018. doi: 10.1088/1748-605X/aba281.
5
Antibacterial amorphous calcium phosphate nanocomposites with a quaternary ammonium dimethacrylate and silver nanoparticles.
Dent Mater. 2012 May;28(5):561-72. doi: 10.1016/j.dental.2012.01.005. Epub 2012 Feb 2.
6
Review of potential health risks associated with nanoscopic calcium phosphate.
Acta Biomater. 2018 Sep 1;77:1-14. doi: 10.1016/j.actbio.2018.07.036. Epub 2018 Jul 19.
7
Nanoparticles at biointerfaces: Antibacterial activity and nanotoxicology.
Colloids Surf B Biointerfaces. 2019 Dec 1;184:110550. doi: 10.1016/j.colsurfb.2019.110550. Epub 2019 Oct 4.
9
Mineralising and antibacterial effects of modified calcium phosphate treatment on human root cementum.
BMC Oral Health. 2016 Jul 19;17(1):22. doi: 10.1186/s12903-016-0246-4.
10
Tetracycline-loaded calcium phosphate nanoparticle (Tet-CPNP): Rejuvenation of an obsolete antibiotic to further action.
Biochim Biophys Acta. 2016 Sep;1860(9):1929-41. doi: 10.1016/j.bbagen.2016.06.006. Epub 2016 Jun 8.

引用本文的文献

4
[Not Available].
Exploration (Beijing). 2024 Mar 12;4(5):20230099. doi: 10.1002/EXP.20230099. eCollection 2024 Oct.
5
Self-Therapeutic Nanomaterials: Applications in Biology and Medicine.
Mater Today (Kidlington). 2023 Jan-Feb;62:190-224. doi: 10.1016/j.mattod.2022.11.007. Epub 2022 Nov 29.
6
Altering Microbiomes with Hydroxyapatite Nanoparticles: A Metagenomic Analysis.
Materials (Basel). 2022 Aug 24;15(17):5824. doi: 10.3390/ma15175824.
8
The effect of chemical structure of carboxylate molecules on hydroxyapatite nanoparticles. A structural and morphological study.
Bioact Mater. 2021 Jan 26;6(8):2360-2371. doi: 10.1016/j.bioactmat.2021.01.010. eCollection 2021 Aug.
9
Ceramic 3D-Printed Titanium Cranioplasty.
Craniomaxillofac Trauma Reconstr. 2020 Dec;13(4):329-333. doi: 10.1177/1943387520927916. Epub 2020 Jul 16.
10
A trilogy antimicrobial strategy for multiple infections of orthopedic implants throughout their life cycle.
Bioact Mater. 2020 Dec 10;6(7):1853-1866. doi: 10.1016/j.bioactmat.2020.11.030. eCollection 2021 Jul.

本文引用的文献

1
Development of biocompatible apatite nanorod-based drug-delivery system with in situ fluorescence imaging capacity.
J Mater Chem B. 2014 Apr 14;2(14):2039-2050. doi: 10.1039/c3tb21156h. Epub 2014 Mar 5.
2
Insights into the kinetics of thermally induced crystallization of amorphous calcium phosphate.
Phys Chem Chem Phys. 2018 Nov 28;20(46):29221-29235. doi: 10.1039/c8cp06460a.
3
Calcium Phosphate Nanoparticles as Intrinsic Inorganic Antimicrobials: The Antibacterial Effect.
ACS Appl Mater Interfaces. 2018 Oct 10;10(40):34013-34028. doi: 10.1021/acsami.8b12784. Epub 2018 Sep 28.
4
Formation and transformation of calcium phosphate phases under biologically relevant conditions: Experiments and modelling.
Acta Biomater. 2018 Jul 1;74:478-488. doi: 10.1016/j.actbio.2018.05.027. Epub 2018 May 18.
5
Towards a quantitative model to predict the toxicity/pathogenicity potential of mineral fibers.
Toxicol Appl Pharmacol. 2018 Dec 15;361:89-98. doi: 10.1016/j.taap.2018.05.012. Epub 2018 May 22.
6
On Grounds of the Memory Effect in Amorphous and Crystalline Apatite: Kinetics of Crystallization and Biological Response.
ACS Appl Mater Interfaces. 2018 May 2;10(17):14491-14508. doi: 10.1021/acsami.8b02520. Epub 2018 Apr 17.
7
Bactericidal and Hemocompatible Coating via the Mixed-Charged Copolymer.
ACS Appl Mater Interfaces. 2018 Mar 28;10(12):10428-10436. doi: 10.1021/acsami.7b18889. Epub 2018 Mar 15.
8
Nanoanalytical electron microscopy of events predisposing to mineralisation of turkey tendon.
Sci Rep. 2018 Feb 14;8(1):3024. doi: 10.1038/s41598-018-20072-2.
9
Do bioresorbable polyesters have antimicrobial properties?
J Mater Sci Mater Med. 2018 Jan 16;29(2):18. doi: 10.1007/s10856-017-6021-5.
10
Form Follows Function: Nanoparticle Shape and Its Implications for Nanomedicine.
Chem Rev. 2017 Sep 13;117(17):11476-11521. doi: 10.1021/acs.chemrev.7b00194. Epub 2017 Sep 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验