Suppr超能文献

钙磷酸盐纳米颗粒作为内在无机抗菌剂:作用机制。

Calcium phosphate nanoparticles as intrinsic inorganic antimicrobials: mechanism of action.

机构信息

MP Biomedicals, 9 Goddard, Irvine, CA 92618, United States of America.

Raybeam, 280 Hope Street, Mountain View, CA 94041, United States of America.

出版信息

Biomed Mater. 2020 Dec 12;16(1):015018. doi: 10.1088/1748-605X/aba281.

Abstract

This is the final report of the study aimed at assessing the antimicrobial activity of calcium phosphate (CP) nanoparticles delivered in the form of hydroxyapatite (HAp) or amorphous CP (ACP) and understanding the fundamental principles behind their mechanisms of action. Not responding to propidium iodide and causing no gross morphological changes except moderate stress-induced filamentation in Escherichia coli (E. coli), CP nanoparticles were shown to be bacteriostatic, not bactericidal. Also, the lack of expression of genes involved in DNA repair indicated no genotoxic activity. In contrast, the softening of amide infrared bands and the partial dissociation of lipopolysaccharide structures comprising the membrane of Gram-negative Pseudomonas aeruginosa (P. aeruginosa) was detected in a vibrational spectroscopic analysis of the nanoparticle/bacterium interaction. Similarly, the inhibition of the growth of Staphylococcus aureus (S. aureus) was paralleled by a reduced integrated intensity and the softening of the C = O ester carbonyl stretch in lipoteichoic acid, a major component of the Gram-positive cell membrane. Electron microscopy analyses confirmed that changes to the cell membrane are a major mode of action of CP nanoparticles. While HAp got internalized by E. coli significantly more than ACP, the membrane damage was more pronounced in ACP-treated bacteria, which was explained by the higher surface reactivity of ACP. HAp nanoparticles decreased the activity of overexpressed efflux pumps in methicillin-resistant S. aureus, suggesting that they may hijack these pumps and use them to enter the cell without producing any visible damage to the membrane, thus acting on the cell from the inside out, as opposed to ACP, whose action is mostly external in mechanism. This may explain why HAp, unlike ACP, suppresses the mechanisms of resistance in methicillin- and multidrug-resistant S. aureus and P. aeruginosa, respectively. The findings of this study will be essential in the optimization of these nanoparticles for becoming an alternative to less biocompatible inorganics and small molecule antibiotics in the global effort to curb the rising resistance of bacterial pathogens to the existing therapies.

摘要

这是一项研究的最终报告,旨在评估以羟磷灰石(HAp)或无定形磷酸钙(ACP)形式递送的磷酸钙(CP)纳米颗粒的抗菌活性,并深入了解其作用机制的基本原理。CP 纳米颗粒对吖啶橙无反应,除了引起大肠杆菌(E. coli)适度的应激诱导丝状化外,不会引起明显的宏观形态变化,被证明具有抑菌而非杀菌作用。此外,参与 DNA 修复的基因表达缺失表明没有遗传毒性活性。相比之下,在纳米颗粒/细菌相互作用的振动光谱分析中,检测到革兰氏阴性铜绿假单胞菌(P. aeruginosa)的酰胺红外带软化和膜组成的脂多糖结构部分解离。同样,金黄色葡萄球菌(S. aureus)的生长抑制与脂磷壁酸(一种革兰氏阳性细胞膜的主要成分)的整合强度降低和 C = O 酯羰基伸展软化平行。电子显微镜分析证实,细胞膜的变化是 CP 纳米颗粒的主要作用模式。虽然 HAp 被 E. coli 内化的程度明显高于 ACP,但在 ACP 处理的细菌中,细胞膜损伤更为明显,这可以解释为 ACP 的表面反应性更高。HAp 纳米颗粒降低了耐甲氧西林金黄色葡萄球菌中超表达外排泵的活性,这表明它们可能劫持这些泵并利用它们进入细胞,而不会对膜造成任何可见的损伤,从而从内部作用于细胞,而不像 ACP,其作用机制主要是外部的。这可能解释了为什么 HAp 与 ACP 不同,分别抑制耐甲氧西林金黄色葡萄球菌和耐多药铜绿假单胞菌的耐药机制。这项研究的结果对于优化这些纳米颗粒以成为全球抑制细菌病原体对现有疗法的耐药性的努力中,替代生物相容性较差的无机物和小分子抗生素至关重要。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验