Department of Microbiology, Cornell University, Ithaca, NY, 14853, USA.
Mol Microbiol. 2019 Aug;112(2):335-347. doi: 10.1111/mmi.14309. Epub 2019 Jun 3.
Transcription is the fundamental process that enables the expression of genetic information. DNA-directed RNA polymerase (RNAP) uses one strand of the DNA duplex as template to produce complementary RNA molecules that serve in translation (rRNA, tRNA), protein synthesis (mRNA) and regulation (sRNA). Although the RNAP core is catalytically competent for RNA synthesis, the selectivity of transcription initiation requires a sigma (σ) factor for promoter recognition and opening. Expression of alternative σ factors provides a powerful mechanism to control the expression of discrete sets of genes (a σ regulon) in response to specific nutritional, developmental or stress-related signals. Here, I review the key insights that led to the original discovery of σ factor 50 years ago and the subsequent discovery of alternative σ factors as a ubiquitous mechanism of bacterial gene regulation. These studies form a prelude to the more recent, genomics-enabled insights into the vast diversity of σ factors in bacteria.
转录是表达遗传信息的基本过程。DNA 指导的 RNA 聚合酶(RNAP)利用 DNA 双链中的一条链作为模板,生成用于翻译(rRNA、tRNA)、蛋白质合成(mRNA)和调节(sRNA)的互补 RNA 分子。尽管 RNAP 核心具有催化 RNA 合成的能力,但转录起始的选择性需要一个 sigma(σ)因子来识别启动子并打开。替代 σ 因子的表达为响应特定的营养、发育或应激相关信号,控制离散基因集(一个 σ 调控子)的表达提供了一种强大的机制。在这里,我回顾了导致 50 年前原始 σ 因子发现的关键见解,以及随后发现替代 σ 因子作为细菌基因调控普遍机制的后续发现。这些研究为最近基于基因组学的对细菌中大量 σ 因子的多样性的深入了解奠定了基础。