Floris Paolo S, Zozoulenko Igor, Rurali Riccardo
Institut de Ciència de Materials de Barcelona, ICMAB-CSIC, Campus UAB, 08193 Bellaterra, Spain.
Laboratory of Organic Electronics (LOE), Department of Science and Technology (ITN), Linköping University, Campus Norrköping, 60174 Norrköping, Sweden.
J Phys Chem C Nanomater Interfaces. 2025 Feb 21;129(9):4354-4357. doi: 10.1021/acs.jpcc.4c07765. eCollection 2025 Mar 6.
Poly(benzodifurandione) (PBFDO) has emerged as a promising n-type conductive polymer (n-CP) for organic electronic applications, particularly in thermoelectrics (TE), due to its high doping efficiency and environmental stability. Unlike most high-performance p-type polymers, high-efficiency n-CPs are limited, posing a bottleneck in the TE module performance. In this study, we use first-principles electronic structure calculations to investigate the thermodynamic conditions that favor n-doping in PBFDO, focusing on the role of the temperature, chain length, and doping concentration. We compute the change in Gibbs free energy, Δ, upon doping and explore how it varies with temperature and polymer chain length. Our results show that doping becomes more thermodynamically favorable at lower temperatures and in longer chains, with a strong dependence of Δ on the doping level emerging as chain length increases. Notably, PBFDO can achieve favorable doping levels across various chain lengths and temperatures, with specific doping thresholds identified for different molecular weights. These findings suggest that lower synthesis temperatures could lead to more heavily doped, higher-conductivity PBFDO, and that chain length significantly influences achievable doping efficiency. This work provides insights for optimizing PBFDO doping strategies to enhance its performance in TE applications, bridging a key gap in organic semiconductor research.
聚(苯并二呋喃二酮)(PBFDO)由于其高掺杂效率和环境稳定性,已成为一种有前途的用于有机电子应用的n型导电聚合物(n-CP),特别是在热电(TE)领域。与大多数高性能p型聚合物不同,高效n-CP数量有限,这成为TE模块性能的一个瓶颈。在本研究中,我们使用第一性原理电子结构计算来研究有利于PBFDO中n掺杂的热力学条件,重点关注温度、链长和掺杂浓度的作用。我们计算了掺杂时吉布斯自由能的变化Δ,并探讨其如何随温度和聚合物链长而变化。我们的结果表明,在较低温度和较长链中,掺杂在热力学上更有利,随着链长增加,Δ对掺杂水平有很强的依赖性。值得注意的是,PBFDO在各种链长和温度下都能实现有利的掺杂水平,并为不同分子量确定了特定的掺杂阈值。这些发现表明,较低的合成温度可能导致PBFDO掺杂更重、导电性更高,并且链长显著影响可实现的掺杂效率。这项工作为优化PBFDO掺杂策略以提高其在TE应用中的性能提供了见解,弥合了有机半导体研究中的一个关键差距。