Suppr超能文献

模拟视野“周围”的视觉性能差异:一种计算观测器方法。

Modeling visual performance differences 'around' the visual field: A computational observer approach.

机构信息

Department of Psychology, New York University, New York, New York, United States of America.

Center for Neural Science, New York University, New York, New York, United States of America.

出版信息

PLoS Comput Biol. 2019 May 24;15(5):e1007063. doi: 10.1371/journal.pcbi.1007063. eCollection 2019 May.

Abstract

Visual performance depends on polar angle, even when eccentricity is held constant; on many psychophysical tasks observers perform best when stimuli are presented on the horizontal meridian, worst on the upper vertical, and intermediate on the lower vertical meridian. This variation in performance 'around' the visual field can be as pronounced as that of doubling the stimulus eccentricity. The causes of these asymmetries in performance are largely unknown. Some factors in the eye, e.g. cone density, are positively correlated with the reported variations in visual performance with polar angle. However, the question remains whether these correlations can quantitatively explain the perceptual differences observed 'around' the visual field. To investigate the extent to which the earliest stages of vision-optical quality and cone density-contribute to performance differences with polar angle, we created a computational observer model. The model uses the open-source software package ISETBIO to simulate an orientation discrimination task for which visual performance differs with polar angle. The model starts from the photons emitted by a display, which pass through simulated human optics with fixational eye movements, followed by cone isomerizations in the retina. Finally, we classify stimulus orientation using a support vector machine to learn a linear classifier on the photon absorptions. To account for the 30% increase in contrast thresholds for upper vertical compared to horizontal meridian, as observed psychophysically on the same task, our computational observer model would require either an increase of ~7 diopters of defocus or a reduction of 500% in cone density. These values far exceed the actual variations as a function of polar angle observed in human eyes. Therefore, we conclude that these factors in the eye only account for a small fraction of differences in visual performance with polar angle. Substantial additional asymmetries must arise in later retinal and/or cortical processing.

摘要

视觉表现取决于极角,即使在保持偏心率不变的情况下也是如此;在许多心理物理任务中,当刺激呈现在水平子午线上时,观察者表现最佳,在最上面的垂直子午线上表现最差,在最下面的垂直子午线上表现居中。这种在视野周围的表现变化与刺激偏心率的两倍一样明显。这些表现上的不对称的原因在很大程度上是未知的。眼睛中的一些因素,例如视锥细胞密度,与报告的极角视觉表现变化呈正相关。然而,问题仍然是这些相关性是否可以定量解释在视野周围观察到的感知差异。为了研究视觉的最早阶段——光学质量和视锥细胞密度——对极角表现差异的影响程度,我们创建了一个计算观察器模型。该模型使用开源软件包 ISETBIO 模拟一个方位辨别任务,该任务的视觉表现随极角而变化。该模型从显示器发出的光子开始,这些光子穿过带有固视眼动的模拟人眼光学,然后在视网膜中进行视锥异构化。最后,我们使用支持向量机对刺激方向进行分类,以便在光子吸收上学习线性分类器。为了解释在相同任务上的心理物理学观察到的与水平子午线相比上垂直子午线的对比度阈值增加 30%,我们的计算观察器模型需要增加约 7 屈光度的散焦或减少 500%的视锥细胞密度。这些值远远超过人眼观察到的极角实际变化。因此,我们得出结论,眼睛中的这些因素仅占极角视觉表现差异的一小部分。在视网膜和/或皮质处理的后期,必然会出现更大的额外不对称性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/da6f/6553792/9dc60a575007/pcbi.1007063.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验