Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, Virginia; Virginia Tech-Wake Forest University School of Biomedical Engineering and Sciences, Blacksburg, Virginia.
Department of Surgery, Division of HPB Surgery, Carolinas Medical Center, 1000 Blythe Boulevard, Charlotte, NC 28203.
J Vasc Interv Radiol. 2019 Jun;30(6):854-862.e7. doi: 10.1016/j.jvir.2019.01.032.
To investigate the feasibility of single-needle high-frequency irreversible electroporation (SN-HFIRE) to create reproducible tissue ablations in an in vivo pancreatic swine model.
SN-HFIRE was performed in swine pancreas in vivo in the absence of intraoperative paralytics or cardiac synchronization using 3 different voltage waveforms (1-5-1, 2-5-2, and 5-5-5 [on-off-on times (μs)], n = 6/setting) with a total energized time of 100 μs per burst. At necropsy, ablation size/shape was determined. Immunohistochemistry was performed to quantify apoptosis using an anticleaved caspase-3 antibody. A numerical model was developed to determine lethal thresholds for each waveform in pancreas.
Mean tissue ablation time was 5.0 ± 0.2 minutes, and no cardiac abnormalities or muscle twitch was detected. Mean ablation area significantly increased with increasing pulse width (41.0 ± 5.1 mm [range 32-66 mm] vs 44 ± 2.1 mm [range 38-56 mm] vs 85.0 ± 7.0 mm [range 63-155 mm]; 1-5-1, 2-5-2, 5-5-5, respectively; p < 0.0002 5-5-5 vs 1-5-1 and 2-5-2). The majority of the ablation zone did not stain positive for cleaved caspase-3 (6.1 ± 2.8% [range 1.8-9.1%], 8.8 ± 1.3% [range 5.5-14.0%], and 11.0 ± 1.4% [range 7.1-14.2%] cleaved caspase-3 positive 1-5-1, 2-5-2, 5-5-5, respectively), with significantly more positive staining at the 5-5-5 pulse setting compared with 1-5-1 (p < 0.03). Numerical modeling determined a lethal threshold of 1114 ± 123 V/cm (1-5-1 waveform), 1039 ± 103 V/cm (2-5-2 waveform), and 693 ± 81 V/cm (5-5-5 waveform).
SN-HFIRE induces rapid, predictable ablations in pancreatic tissue in vivo without the need for intraoperative paralytics or cardiac synchronization.
研究在无术中肌松剂或心脏同步的情况下,使用单针高频不可逆电穿孔(SN-HFIRE)在活体猪胰腺模型中创建可重复组织消融的可行性。
使用 3 种不同的电压波形(1-5-1、2-5-2 和 5-5-5[导通-关断-导通时间(μs)],n=6/设置),每个脉冲的总通电时间为 100μs,在活体猪胰腺中进行 SN-HFIRE 操作。在解剖时,确定消融的大小/形状。使用抗切割半胱天冬酶-3 抗体进行免疫组织化学检测以定量细胞凋亡。开发了一个数值模型来确定每种波形在胰腺中的致死阈值。
平均组织消融时间为 5.0±0.2 分钟,未检测到心律失常或肌肉抽搐。随着脉冲宽度的增加,平均消融面积显著增加(41.0±5.1mm[范围 32-66mm] 比 44±2.1mm[范围 38-56mm] 比 85.0±7.0mm[范围 63-155mm];1-5-1、2-5-2、5-5-5,分别;p<0.0002 5-5-5 与 1-5-1 和 2-5-2)。大多数消融区域对半胱天冬酶-3 无阳性染色(6.1±2.8%[范围 1.8-9.1%],8.8±1.3%[范围 5.5-14.0%]和 11.0±1.4%[范围 7.1-14.2%]阳性半胱天冬酶-3;1-5-1、2-5-2、5-5-5 分别),5-5-5 脉冲设置的阳性染色明显多于 1-5-1(p<0.03)。数值建模确定了 1114±123V/cm(1-5-1 波形)、1039±103V/cm(2-5-2 波形)和 693±81V/cm(5-5-5 波形)的致死阈值。
SN-HFIRE 可在无需术中肌松剂或心脏同步的情况下,在活体猪胰腺组织中快速、可预测地诱导消融。