Suppr超能文献

探索睡眠障碍移动应用程序的用户需求和偏好:混合方法研究。

Exploring User Needs and Preferences for Mobile Apps for Sleep Disturbance: Mixed Methods Study.

作者信息

Aji Melissa, Gordon Christopher, Peters Dorian, Bartlett Delwyn, Calvo Rafael A, Naqshbandi Khushnood, Glozier Nick

机构信息

Brain and Mind Centre, Central Clinical School, Sydney Medical School, Faculty of Medicine and Health, University of Sydney, Camperdown NSW, Australia.

CRC for Alertness, Safety and Productivity, Melbourne, Victoria, Australia.

出版信息

JMIR Ment Health. 2019 May 24;6(5):e13895. doi: 10.2196/13895.

Abstract

BACKGROUND

Mobile health (mHealth) apps demonstrate promise for improving sleep at scale. End-user engagement is a prerequisite for sustained use and effectiveness.

OBJECTIVE

We assessed the needs and preferences of those with poor sleep and insomnia to inform the development of an engaging sleep app.

METHODS

We triangulated results from qualitative (focus groups and app reviews) and quantitative (online survey) approaches. A total of 2 focus groups were conducted (N=9). An online survey tested themes identified from the focus groups against a larger population (N=167). In addition, we analyzed 434 user reviews of 6 mobile apps available on app stores.

RESULTS

Common focus group themes included the need to account for diverse sleep phenotypes with an adaptive and tailored program, key app features (alarms and sleep diaries), the complex yet condescending nature of existing resources, providing rationale for information requested, and cost as a motivator. Most survey participants (156/167, 93%) would try an evidence-based sleep app. The most important app features reported were sleep diaries (148/167, 88%), sharing sleep data with a doctor (116/167, 70%), and lifestyle tracking (107/167, 64%). App reviews highlighted the alarm as the most salient app feature (43/122, 35%) and data synchronization with a wearable device (WD) as the most commonly mentioned functionality (40/135, 30%).

CONCLUSIONS

This co-design process involving end users through 3 methods consistently highlighted sleep tracking (through a diary and WD), alarms, and personalization as vital for engagement, although their implementation was commonly criticized in review. Engagement is negatively affected by poorly designed features, bugs, and didactic information which must be addressed. Other needs depend upon the type of user, for example, those with severe insomnia.

摘要

背景

移动健康(mHealth)应用程序显示出大规模改善睡眠的前景。最终用户的参与度是持续使用和有效性的先决条件。

目的

我们评估了睡眠不佳和失眠患者的需求和偏好,以为一款引人入胜的睡眠应用程序的开发提供信息。

方法

我们将定性(焦点小组和应用程序评论)和定量(在线调查)方法的结果进行了三角互证。共进行了2个焦点小组(N = 9)。一项在线调查针对更多人群(N = 167)测试了从焦点小组中确定的主题。此外,我们分析了应用商店中6款移动应用程序的434条用户评论。

结果

焦点小组的常见主题包括需要通过适应性和量身定制的程序来考虑不同的睡眠表型、关键应用程序功能(闹钟和睡眠日记)、现有资源复杂但居高临下的性质、为所要求的信息提供理由以及成本作为一个激励因素。大多数调查参与者(156/167,93%)会尝试一款基于证据的睡眠应用程序。报告的最重要的应用程序功能是睡眠日记(148/167,88%)、与医生共享睡眠数据(116/167,70%)以及生活方式跟踪(107/167,64%)。应用程序评论强调闹钟是最突出的应用程序功能(43/122,35%),与可穿戴设备(WD)的数据同步是最常提到的功能(40/135,30%)。

结论

这个通过3种方法让最终用户参与的协同设计过程一直强调睡眠跟踪(通过日记和WD)、闹钟和个性化对于用户参与至关重要,尽管它们的实施在评论中普遍受到批评。设计不佳的功能、漏洞和说教性信息会对用户参与产生负面影响,必须加以解决。其他需求取决于用户类型,例如严重失眠的用户。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6cfc/6707571/5c8efe1747ef/mental_v6i5e13895_fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验