Suppr超能文献

利用自然语言处理技术评估年轻人对酒精使用数字睡眠干预的用户体验。

Leveraging Natural Language Processing to Evaluate Young Adults' User Experiences with a Digital Sleep Intervention for Alcohol Use.

作者信息

Griffith Frances, Ash Garrett, Augustine Madilyn, Latimer Leah, Verne Naomi, Redeker Nancy, O'Malley Stephanie, DeMartini Kelly, Fucito Lisa

机构信息

Yale School of Medicine.

Yale.

出版信息

Res Sq. 2024 Mar 28:rs.3.rs-3977182. doi: 10.21203/rs.3.rs-3977182/v1.

Abstract

Evaluating user experiences with digital interventions is critical to increase uptake and adherence, but traditional methods have limitations. We incorporated natural language processing (NLP) with convergent mixed methods to evaluate a personalized feedback and coaching digital sleep intervention for alcohol risk reduction: 'Call it a Night' ( = 120). In this randomized clinical trial with young adults with heavy drinking, control conditions were + : web-based advice + active and passive monitoring; and : advice + passive monitoring. Findings converged to show that the treatment condition group found feedback and coaching most helpful, whereas participants across conditions generally found advice helpful. Further, most participants across groups were interested in varied whole-health sleep-related factors besides alcohol use (e.g., physical activity), and many appreciated increased awareness through monitoring with digital tools. All groups had high adherence, satisfaction, and reported feasibility, but participants in and + reported significantly higher effectiveness than those in . NLP corroborated positive sentiments across groups and added critical insight that sleep, not alcohol use, was a main participant motivator. Digital sleep interventions are an acceptable, novel alcohol treatment strategy, and improving sleep and overall wellness may be important motivations for young adults. Further, NLP provides an efficient convergent method for evaluating experiences with digital interventions.

摘要

评估数字干预措施的用户体验对于提高其采用率和依从性至关重要,但传统方法存在局限性。我们将自然语言处理(NLP)与收敛性混合方法相结合,以评估一种用于降低酒精风险的个性化反馈与指导数字睡眠干预措施:“晚安计划”(n = 120)。在这项针对重度饮酒青年成年人的随机临床试验中,对照条件为:+:基于网络的建议 + 主动和被动监测;以及:建议 + 被动监测。研究结果趋于一致,表明治疗条件组认为反馈和指导最有帮助,而各条件下的参与者普遍认为建议有帮助。此外,除饮酒外,大多数各分组参与者对各种与整体健康相关的睡眠因素(如体育活动)感兴趣,并且许多人赞赏通过数字工具监测提高了认识。所有组的依从性、满意度和报告的可行性都很高,但和 + 组的参与者报告的有效性明显高于组。NLP证实了各分组的积极情绪,并补充了关键见解,即睡眠而非饮酒是参与者的主要动机。数字睡眠干预措施是一种可接受的新型酒精治疗策略,改善睡眠和整体健康状况可能是青年成年人的重要动机。此外,NLP为评估数字干预措施的体验提供了一种有效的收敛方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7bb3/10996819/07663b4c10d8/nihpp-rs3977182v1-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验