Suppr超能文献

利用自然语言处理在疫苗安全数据链中的五个医疗系统中识别 Tdap 相关局部反应。

The use of natural language processing to identify Tdap-related local reactions at five health care systems in the Vaccine Safety Datalink.

机构信息

Kaiser Permanente Southern California, Pasadena, CA, USA.

Kaiser Permanente Southern California, Pasadena, CA, USA.

出版信息

Int J Med Inform. 2019 Jul;127:27-34. doi: 10.1016/j.ijmedinf.2019.04.009. Epub 2019 Apr 13.

Abstract

OBJECTIVE

Local reactions are the most common vaccine-related adverse event. There is no specific diagnosis code for local reaction due to vaccination. Previous vaccine safety studies used non-specific diagnosis codes to identify potential local reaction cases and confirmed the cases through manual chart review. In this study, a natural language processing (NLP) algorithm was developed to identify local reaction associated with tetanus-diphtheria-acellular pertussis (Tdap) vaccine in the Vaccine Safety Datalink.

METHODS

Presumptive cases of local reactions were identified among members ≥ 11 years of age using ICD-9-CM codes in all care settings in the 1-6 days following a Tdap vaccination between 2012 and 2014. The clinical notes were searched for signs and symptoms consistent with local reaction. Information on the timing and the location of a sign or symptom was also extracted to help determine whether or not the sign or symptom was vaccine related. Reactions triggered by causes other than Tdap vaccination were excluded. The NLP algorithm was developed at the lead study site and validated on a stratified random sample of 500 patients from five institutions.

RESULTS

The NLP algorithm achieved an overall weighted sensitivity of 87.9%, specificity of 92.8%, positive predictive value of 82.7%, and negative predictive value of 95.1%. In addition, using data at one site, the NLP algorithm identified 3326 potential Tdap-related local reactions that were not identified through diagnosis codes.

CONCLUSION

The NLP algorithm achieved high accuracy, and demonstrated the potential of NLP to reduce the efforts of manual chart review in vaccine safety studies.

摘要

目的

局部反应是最常见的与疫苗相关的不良反应。由于疫苗接种导致的局部反应没有特定的诊断代码。以前的疫苗安全性研究使用非特定的诊断代码来识别潜在的局部反应病例,并通过人工病历审查来确认这些病例。在这项研究中,开发了一种自然语言处理(NLP)算法,以在疫苗安全数据链接中识别与破伤风、白喉、无细胞百日咳(Tdap)疫苗相关的局部反应。

方法

在 2012 年至 2014 年期间,在所有医疗环境中,使用 ICD-9-CM 代码,在 Tdap 接种后 1-6 天内,在所有医疗环境中,对年龄≥11 岁的患者识别疑似局部反应病例。搜索临床记录,以寻找与局部反应一致的体征和症状。还提取了体征或症状出现的时间和位置的信息,以帮助确定体征或症状是否与疫苗有关。排除因 Tdap 接种以外的原因引起的反应。该 NLP 算法在牵头研究机构开发,并在来自五个机构的 500 名患者的分层随机样本上进行验证。

结果

NLP 算法的总体加权灵敏度为 87.9%,特异性为 92.8%,阳性预测值为 82.7%,阴性预测值为 95.1%。此外,使用一个站点的数据,NLP 算法识别出 3326 例未通过诊断代码识别的潜在 Tdap 相关局部反应。

结论

NLP 算法具有较高的准确性,并证明了 NLP 在疫苗安全性研究中减少人工病历审查工作的潜力。

相似文献

1
2
3
Immunogenicity and safety of reduced-antigen tetanus, diphtheria and acellular pertussis vaccination in adults treated for obstructive airway diseases.
Hum Vaccin Immunother. 2023 Dec 31;19(1):2159731. doi: 10.1080/21645515.2022.2159731. Epub 2023 Feb 6.
8
Safety and immunogenicity of a combined Tetanus, Diphtheria, recombinant acellular Pertussis vaccine (TdaP) in healthy Thai adults.
Hum Vaccin Immunother. 2017 Jan 2;13(1):136-143. doi: 10.1080/21645515.2016.1234555. Epub 2016 Sep 29.

引用本文的文献

3
Research data warehouse: using electronic health records to conduct population-based observational studies.
JAMIA Open. 2023 Jun 21;6(2):ooad039. doi: 10.1093/jamiaopen/ooad039. eCollection 2023 Jul.
4
Identification of recurrent atrial fibrillation using natural language processing applied to electronic health records.
Eur Heart J Qual Care Clin Outcomes. 2024 Jan 12;10(1):77-88. doi: 10.1093/ehjqcco/qcad021.
7
Risk for Shoulder Conditions After Vaccination: A Population-Based Study Using Real-World Data.
Ann Intern Med. 2022 May;175(5):634-643. doi: 10.7326/M21-3023. Epub 2022 Mar 22.
9
Artificial Intelligence for COVID-19 Drug Discovery and Vaccine Development.
Front Artif Intell. 2020 Aug 18;3:65. doi: 10.3389/frai.2020.00065. eCollection 2020.
10
Automated Identification and Extraction of Exercise Treadmill Test Results.
J Am Heart Assoc. 2020 Mar 3;9(5):e014940. doi: 10.1161/JAHA.119.014940. Epub 2020 Feb 21.

本文引用的文献

1
White Paper on studying the safety of the childhood immunization schedule in the Vaccine Safety Datalink.
Vaccine. 2016 Feb 15;34 Suppl 1:A1-A29. doi: 10.1016/j.vaccine.2015.10.082.
2
4
Safety monitoring in the Vaccine Adverse Event Reporting System (VAERS).
Vaccine. 2015 Aug 26;33(36):4398-405. doi: 10.1016/j.vaccine.2015.07.035. Epub 2015 Jul 22.
5
Best vaccination practice and medically attended injection site events following deltoid intramuscular injection.
Hum Vaccin Immunother. 2015;11(5):1184-91. doi: 10.1080/21645515.2015.1017694.
6
The Vaccine Safety Datalink: successes and challenges monitoring vaccine safety.
Vaccine. 2014 Sep 22;32(42):5390-8. doi: 10.1016/j.vaccine.2014.07.073. Epub 2014 Aug 6.
7
Natural language processing in biomedicine: a unified system architecture overview.
Methods Mol Biol. 2014;1168:275-94. doi: 10.1007/978-1-4939-0847-9_16.
8
Using natural language processing and machine learning to identify gout flares from electronic clinical notes.
Arthritis Care Res (Hoboken). 2014 Nov;66(11):1740-8. doi: 10.1002/acr.22324.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验