Suppr超能文献

自动识别和提取运动平板试验结果。

Automated Identification and Extraction of Exercise Treadmill Test Results.

机构信息

Research and Evaluation Department Kaiser Permanente Southern California Pasadena CA.

Department of Emergency Medicine University of Pennsylvania Philadelphia PA.

出版信息

J Am Heart Assoc. 2020 Mar 3;9(5):e014940. doi: 10.1161/JAHA.119.014940. Epub 2020 Feb 21.

Abstract

Background Noninvasive cardiac tests, including exercise treadmill tests (ETTs), are commonly utilized in the evaluation of patients in the emergency department with suspected acute coronary syndrome. However, there are ongoing debates on their clinical utility and cost-effectiveness. It is important to be able to use ETT results for research, but manual review is prohibitively time-consuming for large studies. We developed and validated an automated method to interpret ETT results from electronic health records. To demonstrate the algorithm's utility, we tested the associations between ETT results with 30-day patient outcomes in a large population. Methods and Results A retrospective analysis of adult emergency department encounters resulting in an ETT within 30 days was performed. A set of randomly selected reports were double-blind reviewed by 2 physicians to validate a natural language processing algorithm designed to categorize ETT results into normal, ischemic, nondiagnostic, and equivocal categories. Natural language processing then searched and categorized results of 5214 ETT reports. The natural language processing algorithm achieved 96.4% sensitivity and 94.8% specificity in identifying normal versus all other categories. The rates of 30-day death or acute myocardial infarction varied (<0.001) by categories for normal (0.08%), ischemic (1.9%), nondiagnostic (0.77%), and equivocal (0.58%) groups achieving good discrimination (C-statistic, 0.81; 95% CI, 0.7-0.92). Conclusions Natural language processing is an accurate and efficient strategy to facilitate large-scale outcome studies of noninvasive cardiac tests. We found that most patients are at low risk and have normal ETT results, while those with abnormal, nondiagnostic, or equivocal results have slightly higher risks and warrant future investigation.

摘要

背景

包括运动平板试验(ETT)在内的无创性心脏检查常用于评估急诊科疑似急性冠状动脉综合征的患者。然而,这些检查的临床实用性和成本效益仍存在争议。能够将 ETT 结果用于研究很重要,但对于大型研究来说,手动审查非常耗时。我们开发并验证了一种从电子健康记录中自动解读 ETT 结果的方法。为了证明该算法的实用性,我们在一个大型人群中测试了 ETT 结果与 30 天患者结局之间的关联。

方法和结果

对在 30 天内进行 ETT 的成年急诊科就诊进行了回顾性分析。一组随机选择的报告由 2 名医生进行双盲审查,以验证一种旨在将 ETT 结果分类为正常、缺血、非诊断和不确定类别的自然语言处理算法。自然语言处理随后搜索并分类了 5214 份 ETT 报告的结果。该自然语言处理算法在识别正常与所有其他类别方面的敏感性和特异性分别为 96.4%和 94.8%。30 天内死亡或急性心肌梗死的发生率因正常(0.08%)、缺血(1.9%)、非诊断(0.77%)和不确定(0.58%)组而异(<0.001),分类效果良好(C 统计量为 0.81;95%CI,0.7-0.92)。

结论

自然语言处理是一种准确且高效的策略,可促进无创性心脏检查的大规模结局研究。我们发现,大多数患者风险较低,且 ETT 结果正常,而异常、非诊断或不确定结果的患者风险略高,需要进一步研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dede/7335560/db330c46523b/JAH3-9-e014940-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验