Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland.
Wiley Interdiscip Rev RNA. 2019 Nov;10(6):e1548. doi: 10.1002/wrna.1548. Epub 2019 May 26.
The nonsense-mediated mRNA decay pathway selects and degrades its targets using a dense network of RNA-protein and protein-protein interactions. Together, these interactions allow the pathway to collect copious information about the translating mRNA, including translation termination status, splice junction positions, mRNP composition, and 3'UTR length and structure. The core NMD machinery, centered on the RNA helicase UPF1, integrates this information to determine the efficiency of decay. A picture of NMD is emerging in which many factors contribute to the dynamics of decay complex assembly and disassembly, thereby influencing the probability of decay. The ability of the NMD pathway to recognize mRNP features of diverse potential substrates allows it to simultaneously perform quality control and regulatory functions. In vertebrates, increased transcriptome complexity requires balance between these two functions since high NMD efficiency is desirable for maintenance of quality control fidelity but may impair expression of normal mRNAs. NMD has adapted to this challenge by employing mechanisms to enhance identification of certain potential substrates, while using sequence-specific RNA-binding proteins to shield others from detection. These elaborations on the conserved NMD mechanism permit more sensitive post-transcriptional gene regulation but can have severe deleterious consequences, including the failure to degrade pathogenic aberrant mRNAs in many B cell lymphomas. This article is categorized under: RNA Evolution and Genomics > RNA and Ribonucleoprotein Evolution RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications RNA Turnover and Surveillance > Turnover/Surveillance Mechanisms.
无意义介导的 mRNA 降解途径使用 RNA-蛋白质和蛋白质-蛋白质相互作用的密集网络来选择和降解其靶标。这些相互作用共同允许该途径收集有关正在翻译的 mRNA 的大量信息,包括翻译终止状态、剪接连接位置、mRNP 组成以及 3'UTR 长度和结构。以 RNA 解旋酶 UPF1 为中心的核心 NMD 机制整合了这些信息,以确定降解的效率。NMD 的作用正在显现,许多因素有助于降解复合物组装和拆卸的动态,从而影响降解的概率。NMD 途径能够识别各种潜在底物的 mRNP 特征,使其能够同时执行质量控制和调节功能。在脊椎动物中,转录组复杂性的增加需要在这两个功能之间取得平衡,因为高 NMD 效率对于维持质量控制保真度是可取的,但可能会损害正常 mRNA 的表达。NMD 通过采用机制来增强对某些潜在底物的识别,同时使用序列特异性 RNA 结合蛋白来屏蔽其他底物的检测,从而适应了这一挑战。这些对保守的 NMD 机制的改进允许更敏感的转录后基因调控,但可能会产生严重的有害后果,包括在许多 B 细胞淋巴瘤中无法降解致病异常 mRNA。本文属于以下类别: RNA 进化和基因组学 > RNA 和核糖核蛋白进化 RNA 与蛋白质和其他分子的相互作用 > 蛋白质-RNA 相互作用:功能意义 RNA 周转和监控 > 周转/监控机制。