Suppr超能文献

高度平面且完全绝缘的寡聚噻吩:π共轭对跳跃电荷传输的影响。

Highly Planar and Completely Insulated Oligothiophenes: Effects of π-Conjugation on Hopping Charge Transport.

作者信息

Ie Yutaka, Okamoto Yuji, Inoue Takuya, Tone Saori, Seo Takuji, Honda Yasushi, Tanaka Shoji, Lee See Kei, Ohto Tatsuhiko, Yamada Ryo, Tada Hirokazu, Aso Yoshio

机构信息

The Institute of Scientific and Industrial Research (ISIR) , Osaka University , 8-1 Mihogaoka , Ibaraki , Osaka 567-0047 , Japan.

West Japan Office, HPC Systems Inc. , 646 Nijohanjikicho , Shimogyo-ku, Kyoto 600-8412 , Japan.

出版信息

J Phys Chem Lett. 2019 Jun 20;10(12):3197-3204. doi: 10.1021/acs.jpclett.9b00747. Epub 2019 May 31.

Abstract

Elucidating the nature of long-range intramolecular charge transport in π-conjugated molecules is of great importance for the development of organic electronic materials. However, the effects of the degree of π-conjugation on the hopping charge transport have not been experimentally explored so far owing to the lack of π-conjugated backbones with different conjugation degrees and several-nanometer lengths. Here we develop highly planar and completely insulated oligothiophenes between 0.85 and 9.64 nm in length. As compared to distorted oligothiophenes, single-molecule conductance measurements of the planar molecules show (i) a smaller activation energy and larger electrical conductance in the hopping transport regime and (ii) a shift in crossover between tunneling and hopping conduction toward a short molecular length. Theoretical calculations indicate that small reorganization energies and narrow energy gaps derived from the planar backbones result in these superior characteristics. This study reveals that the planarity of π-conjugation has significant advantages for hopping charge transport.

摘要

阐明π共轭分子中长程分子内电荷传输的本质对于有机电子材料的发展至关重要。然而,由于缺乏具有不同共轭程度和几纳米长度的π共轭主链,到目前为止尚未通过实验探索π共轭程度对跳跃电荷传输的影响。在此,我们制备了长度在0.85至9.64 nm之间的高度平面且完全绝缘的寡聚噻吩。与扭曲的寡聚噻吩相比,平面分子的单分子电导测量结果表明:(i)在跳跃传输区域中具有较小的活化能和较大的电导率;(ii)隧穿和跳跃传导之间的交叉点向较短分子长度偏移。理论计算表明,平面主链产生的小重组能和窄能隙导致了这些优异特性。这项研究表明,π共轭的平面性对于跳跃电荷传输具有显著优势。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验