Department of Theoretical Biophysics , Max Planck Institute of Biophysics , Max-von-Laue Str. 3 , 60438 Frankfurt am Main , Germany.
Institute for Biophysics , Goethe University Frankfurt , 60438 Frankfurt am Main , Germany.
J Phys Chem B. 2019 Jun 20;123(24):5099-5106. doi: 10.1021/acs.jpcb.9b01656. Epub 2019 Jun 10.
We investigate system-size effects on the rotational diffusion of membrane proteins and other membrane-embedded molecules in molecular dynamics simulations. We find that the rotational diffusion coefficient slows down relative to the infinite-system value by a factor of one minus the ratio of protein and box areas. This correction factor follows from the hydrodynamics of rotational flows under periodic boundary conditions and is rationalized in terms of Taylor-Couette flow. For membrane proteins like transporters, channels, or receptors in typical simulation setups, the protein-covered area tends to be relatively large, requiring a significant finite-size correction. Molecular dynamics simulations of the protein adenine nucleotide translocase (ANT1) and of a carbon nanotube porin in lipid membranes show that the hydrodynamic finite-size correction for rotational diffusion is accurate in standard-use cases. The dependence of the rotational diffusion on box size can be used to determine the membrane viscosity.
我们在分子动力学模拟中研究了体系大小对膜蛋白和其他膜嵌入分子的旋转扩散的影响。我们发现,旋转扩散系数相对于无限体系值的减缓程度与蛋白与盒子面积的比值成反比。这个修正因子源于周期性边界条件下的旋转流的流体力学,并可以根据泰勒-库埃特流来合理化。对于像转运蛋白、通道或受体这样的膜蛋白,在典型的模拟设置中,蛋白覆盖的面积往往相对较大,需要进行显著的有限尺寸修正。在含脂膜中的蛋白腺嘌呤核苷酸转位酶(ANT1)和碳纳米管孔蛋白的分子动力学模拟表明,用于旋转扩散的流体力学有限尺寸修正在标准应用案例中是准确的。旋转扩散对盒子大小的依赖性可用于确定膜粘度。