Suppr超能文献

基于机器学习的精神疾病分类中症状、认知和其他多层次变量的相对重要性。

Relative importance of symptoms, cognition, and other multilevel variables for psychiatric disease classifications by machine learning.

机构信息

Department of Psychology, University of Dayton, Dayton, OH, United States; Department of Psychiatry, Wright State University Boonshoft School of Medicine, Dayton, OH, United States.

Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY, United States.

出版信息

Psychiatry Res. 2019 Aug;278:27-34. doi: 10.1016/j.psychres.2019.03.048. Epub 2019 Mar 29.

Abstract

This study used machine-learning algorithms to make unbiased estimates of the relative importance of various multilevel data for classifying cases with schizophrenia (n = 60), schizoaffective disorder (n = 19), bipolar disorder (n = 20), unipolar depression (n = 14), and healthy controls (n = 51) into psychiatric diagnostic categories. The Random Forest machine learning algorithm, which showed best efficacy (92.9% SD: 0.06), was used to generate variable importance ranking of positive, negative, and general psychopathology symptoms, cognitive indexes, global assessment of function (GAF), and parental ages at birth for sorting participants into diagnostic categories. Symptoms were ranked most influential for separating cases from healthy controls, followed by cognition and maternal age. To separate schizophrenia/schizoaffective disorder from bipolar/unipolar depression, GAF was most influential, followed by cognition and paternal age. For classifying schizophrenia from all other psychiatric disorders, low GAF and paternal age were similarly important, followed by cognition, psychopathology and maternal age. Controls misclassified as schizophrenia cases showed lower nonverbal abilities, mild negative and general psychopathology symptoms, and younger maternal or older paternal age. The importance of symptoms for classification of cases and lower GAF for diagnosing schizophrenia, notably more important and distinct from cognition and symptoms, concurs with current practices. The high importance of parental ages is noteworthy and merits further study.

摘要

本研究使用机器学习算法,对各种多层次数据在将精神分裂症(n=60)、分裂情感障碍(n=19)、双相情感障碍(n=20)、单相抑郁(n=14)和健康对照(n=51)病例分类为精神科诊断类别的相对重要性进行了无偏估计。随机森林机器学习算法表现出最佳效果(92.9%,SD:0.06),用于生成阳性、阴性和一般精神病症状、认知指标、总体功能评估(GAF)和父母出生年龄的变量重要性排名,以将参与者分类到诊断类别中。症状对区分病例与健康对照的影响最大,其次是认知和母亲年龄。为了将精神分裂症/分裂情感障碍与双相/单相抑郁区分开来,GAF 的影响最大,其次是认知和父亲年龄。为了将精神分裂症与所有其他精神障碍区分开来,低 GAF 和父亲年龄同样重要,其次是认知、精神病学和母亲年龄。被错误分类为精神分裂症病例的对照者表现出较低的非言语能力、轻度阴性和一般精神病症状,以及较年轻的母亲或较年长的父亲年龄。症状对病例分类的重要性以及 GAF 对诊断精神分裂症的重要性,特别是与认知和症状相比更为重要和独特,与当前实践相符。父母年龄的重要性值得进一步研究。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验