Institute for Mental Health, University of Birmingham, Birmingham, UK.
Centre for Human Brain Health, University of Birmingham, Birmingham, UK.
Schizophr Bull. 2021 Jul 8;47(4):1130-1140. doi: 10.1093/schbul/sbaa185.
Diagnostic heterogeneity within and across psychotic and affective disorders challenges accurate treatment selection, particularly in the early stages. Delineation of shared and distinct illness features at the phenotypic and brain levels may inform the development of more precise differential diagnostic tools. We aimed to identify prototypes of depression and psychosis to investigate their heterogeneity, with common, comorbid transdiagnostic symptoms. Analyzing clinical/neurocognitive and grey matter volume (GMV) data from the PRONIA database, we generated prototypic models of recent-onset depression (ROD) vs. recent-onset psychosis (ROP) by training support-vector machines to separate patients with ROD from patients with ROP, who were selected for absent comorbid features (pure groups). Then, models were applied to patients with comorbidity, ie, ROP with depressive symptoms (ROP+D) and ROD participants with sub-threshold psychosis-like features (ROD+P), to measure their positions within the affective-psychotic continuum. All models were independently validated in a replication sample. Comorbid patients were positioned between pure groups, with ROP+D patients being more frequently classified as ROD compared to pure ROP patients (clinical/neurocognitive model: χ2 = 14.874; P < .001; GMV model: χ2 = 4.933; P = .026). ROD+P patient classification did not differ from ROD (clinical/neurocognitive model: χ2 = 1.956; P = 0.162; GMV model: χ2 = 0.005; P = .943). Clinical/neurocognitive and neuroanatomical models demonstrated separability of prototypic depression from psychosis. The shift of comorbid patients toward the depression prototype, observed at the clinical and biological levels, suggests that psychosis with affective comorbidity aligns more strongly to depressive rather than psychotic disease processes. Future studies should assess how these quantitative measures of comorbidity predict outcomes and individual responses to stratified therapeutic interventions.
在精神病性和情感障碍内部和之间存在诊断异质性,这对准确选择治疗方法构成挑战,尤其是在疾病早期阶段。在表型和大脑水平上描绘共同和独特的疾病特征,可以为开发更精确的鉴别诊断工具提供信息。我们的目的是确定抑郁和精神病的原型,以研究它们的异质性,以及共同的、共患的跨诊断症状。通过训练支持向量机来分离近期发病的抑郁(ROD)与近期发病的精神病(ROP)患者,我们利用 PRONIA 数据库中的临床/神经认知和灰质体积(GMV)数据生成 ROD 与 ROP 的原型模型,这些患者选择没有共患特征(纯组)。然后,将模型应用于共病患者,即有抑郁症状的 ROP(ROP+D)和有阈下精神病样特征的 ROD 参与者(ROD+P),以衡量他们在情感-精神病连续体中的位置。所有模型均在复制样本中进行独立验证。共病患者位于纯组之间,与纯 ROP 患者相比,ROP+D 患者更常被归类为 ROD(临床/神经认知模型:χ2 = 14.874;P <.001;GMV 模型:χ2 = 4.933;P =.026)。ROD+P 患者的分类与 ROD 无差异(临床/神经认知模型:χ2 = 1.956;P = 0.162;GMV 模型:χ2 = 0.005;P =.943)。临床/神经认知和神经解剖模型表明,原型抑郁与精神病的分离。在临床和生物学水平上观察到共病患者向抑郁原型的转变表明,伴情感共病的精神病与抑郁疾病过程更为一致,而不是精神病过程。未来的研究应评估这些共病的定量测量如何预测结局和对分层治疗干预的个体反应。