Metcalfe Ian S, Ray Brian, Dejoie Catherine, Hu Wenting, de Leeuwe Christopher, Dueso Cristina, García-García Francisco R, Mak Cheuk-Man, Papaioannou Evangelos I, Thompson Claire R, Evans John S O
School of Engineering, Newcastle University, Newcastle-upon-Tyne, UK.
European Synchrotron Radiation Facility, Grenoble, France.
Nat Chem. 2019 Jul;11(7):638-643. doi: 10.1038/s41557-019-0273-2. Epub 2019 May 27.
All real processes, be they chemical, mechanical or electrical, are thermodynamically irreversible and therefore suffer from thermodynamic losses. Here, we report the design and operation of a chemical reactor capable of approaching thermodynamically reversible operation. The reactor was employed for hydrogen production via the water-gas shift reaction, an important route to 'green' hydrogen. The reactor avoids mixing reactant gases by transferring oxygen from the (oxidizing) water stream to the (reducing) carbon monoxide stream via a solid-state oxygen reservoir consisting of a perovskite phase (LaSrFeO). This reservoir is able to remain close to equilibrium with the reacting gas streams because of its variable degree of non-stoichiometry and thus develops a 'chemical memory' that we employ to approach reversibility. We demonstrate this memory using operando, spatially resolved, real-time, high-resolution X-ray powder diffraction on a working reactor. The design leads to a reactor unconstrained by overall chemical equilibrium limitations, which can produce essentially pure hydrogen and carbon dioxide as separate product streams.
所有实际过程,无论是化学过程、机械过程还是电气过程,在热力学上都是不可逆的,因此都会产生热力学损失。在此,我们报告了一种能够接近热力学可逆运行的化学反应器的设计与运行情况。该反应器用于通过水煤气变换反应制氢,这是制取“绿色”氢气的一条重要途径。该反应器通过由钙钛矿相(LaSrFeO)构成的固态氧储存器将氧气从(氧化)水流转移至(还原)一氧化碳流,从而避免反应物气体混合。由于其可变的非化学计量比程度,该储存器能够与反应气流保持接近平衡的状态,进而形成一种“化学记忆”,我们利用这种“化学记忆”来接近可逆性。我们在运行中的反应器上使用操作状态下的、空间分辨的、实时的、高分辨率X射线粉末衍射来证明这种记忆。这种设计使得反应器不受整体化学平衡限制的约束,能够产生基本上纯净的氢气和二氧化碳作为单独的产物流。