Suppr超能文献

盐度胁迫诱导海参(Apostichopus japonicus)差异表达的 miRNA 和靶基因。

Salinity stress-induced differentially expressed miRNAs and target genes in sea cucumbers Apostichopus japonicus.

机构信息

Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, Heishijiao Street, No. 52, Dalian, 116023, China.

出版信息

Cell Stress Chaperones. 2019 Jul;24(4):719-733. doi: 10.1007/s12192-019-00996-y. Epub 2019 May 27.

Abstract

Environmental salinity is an important abiotic factor influencing normal physiological functions and productive performance in the sea cucumber Apostichopus japonicus. It is therefore important to understand how changes in salinity affect sea cucumbers in the face of global climate change. In this study, we investigated the responses to salinity stress in sea cucumbers using mRNA and miRNA sequencing. The regulatory network of mRNAs and miRNAs involved in salinity stress was examined, and the metabolic pathways enriched for differentially expressed miRNAs and target mRNAs were identified. The top 20 pathways were involved in carbohydrate metabolism, fatty acid metabolism, degradation, and elongation, amino acid metabolism, genetic information processing, metabolism of cofactors and vitamins, transport and catabolism, and environmental information processing. A total of 22 miRNAs showed differential expression during salinity acclimation. The predicted 134 target genes were enriched in functions consistent with the results of gene enrichment based on transcriptome analysis. These results suggested that sea cucumbers deal with salinity stress via changes in amino acid metabolism, ion channels, transporters, and aquaporins, under stimulation by environmental signals, and that this process requires energy from carbohydrate and fatty acid metabolism. Salinity challenge also induced miRNA expression. These results provide a valuable genomic resource that extends our understanding of the unique biological characteristics of this economically important species under conditions of salinity stress.

摘要

环境盐度是影响海参正常生理功能和生产性能的重要非生物因素。因此,了解盐度变化如何影响海参应对全球气候变化非常重要。在这项研究中,我们使用 mRNA 和 miRNA 测序研究了海参对盐度胁迫的反应。检查了涉及盐度胁迫的 mRNAs 和 miRNAs 的调控网络,并鉴定了差异表达 miRNA 和靶 mRNAs 富集的代谢途径。前 20 个途径涉及碳水化合物代谢、脂肪酸代谢、降解和延伸、氨基酸代谢、遗传信息处理、辅因子和维生素代谢、运输和分解代谢以及环境信息处理。在盐度适应过程中,有 22 个 miRNA 表现出差异表达。预测的 134 个靶基因富集在与基于转录组分析的基因富集结果一致的功能中。这些结果表明,在环境信号的刺激下,海参通过改变氨基酸代谢、离子通道、转运体和水通道来应对盐度胁迫,这一过程需要碳水化合物和脂肪酸代谢提供能量。盐度挑战还诱导了 miRNA 的表达。这些结果提供了有价值的基因组资源,扩展了我们对这种具有经济重要性的物种在盐度胁迫下独特生物学特性的理解。

相似文献

1
Salinity stress-induced differentially expressed miRNAs and target genes in sea cucumbers Apostichopus japonicus.
Cell Stress Chaperones. 2019 Jul;24(4):719-733. doi: 10.1007/s12192-019-00996-y. Epub 2019 May 27.
2
miR-10 involved in salinity-induced stress responses and targets TBC1D5 in the sea cucumber, Apostichopus japonicas.
Comp Biochem Physiol B Biochem Mol Biol. 2020 Apr;242:110406. doi: 10.1016/j.cbpb.2019.110406. Epub 2020 Jan 2.
3
Understanding microRNAs regulation in heat shock response in the sea cucumber Apostichopus japonicus.
Fish Shellfish Immunol. 2018 Oct;81:214-220. doi: 10.1016/j.fsi.2018.07.034. Epub 2018 Jul 17.
5
Differential gene expression in the intestine of sea cucumber (Apostichopus japonicus) under low and high salinity conditions.
Comp Biochem Physiol Part D Genomics Proteomics. 2018 Mar;25:34-41. doi: 10.1016/j.cbd.2017.11.001. Epub 2017 Nov 4.
6
Transcriptome analysis provides insights into the molecular mechanisms responsible for evisceration behavior in the sea cucumber Apostichopus japonicus.
Comp Biochem Physiol Part D Genomics Proteomics. 2019 Jun;30:143-157. doi: 10.1016/j.cbd.2019.02.008. Epub 2019 Feb 27.
8
Differential expression of miRNAs in the body wall of the sea cucumber under heat stress.
Front Physiol. 2022 Jul 21;13:929094. doi: 10.3389/fphys.2022.929094. eCollection 2022.
10
Differential Expression of miRNAs in the Respiratory Tree of the Sea Cucumber Under Hypoxia Stress.
G3 (Bethesda). 2017 Nov 6;7(11):3681-3692. doi: 10.1534/g3.117.1129.

引用本文的文献

1
Insights into the Regulatory Role of MicroRNAs in Under Moderately Low Salinity Stress.
Biology (Basel). 2025 Apr 18;14(4):440. doi: 10.3390/biology14040440.
3
lncRNA-miRNA-mRNA network in kidney transcriptome of Labeo rohita under hypersaline environment.
Sci Data. 2024 Feb 22;11(1):226. doi: 10.1038/s41597-024-03056-y.
5
Interplay of gene expression and regulators under salinity stress in gill of Labeo rohita.
BMC Genomics. 2023 Jun 19;24(1):336. doi: 10.1186/s12864-023-09426-x.
6
Transcriptome Analysis of Marbled Rockfish under Salinity Stress.
Animals (Basel). 2023 Jan 24;13(3):400. doi: 10.3390/ani13030400.
8
The Effect of Salinity Stress on Enzyme Activities, Histology, and Transcriptome of Silver Carp ().
Biology (Basel). 2022 Oct 27;11(11):1580. doi: 10.3390/biology11111580.
9
10
Inhibition of microRNA-29b suppresses oxidative stress and reduces apoptosis in ischemic stroke.
Neural Regen Res. 2022 Feb;17(2):433-439. doi: 10.4103/1673-5374.314319.

本文引用的文献

1
Identifying a Major QTL Associated with Salinity Tolerance in Nile Tilapia Using QTL-Seq.
Mar Biotechnol (NY). 2018 Feb;20(1):98-107. doi: 10.1007/s10126-017-9790-4. Epub 2018 Jan 9.
2
Elucidating the molecular mechanisms mediating plant salt-stress responses.
New Phytol. 2018 Jan;217(2):523-539. doi: 10.1111/nph.14920. Epub 2017 Dec 4.
3
Differential gene expression in the intestine of sea cucumber (Apostichopus japonicus) under low and high salinity conditions.
Comp Biochem Physiol Part D Genomics Proteomics. 2018 Mar;25:34-41. doi: 10.1016/j.cbd.2017.11.001. Epub 2017 Nov 4.
5
Differential Expression of miRNAs in the Respiratory Tree of the Sea Cucumber Under Hypoxia Stress.
G3 (Bethesda). 2017 Nov 6;7(11):3681-3692. doi: 10.1534/g3.117.1129.
7
Autophagy-Dependent Shuttling of TBC1D5 Controls Plasma Membrane Translocation of GLUT1 and Glucose Uptake.
Mol Cell. 2017 Jul 6;67(1):84-95.e5. doi: 10.1016/j.molcel.2017.05.020. Epub 2017 Jun 8.
9
Transcriptional changes in oysters Crassostrea brasiliana exposed to phenanthrene at different salinities.
Aquat Toxicol. 2017 Feb;183:94-103. doi: 10.1016/j.aquatox.2016.12.016. Epub 2016 Dec 21.
10
Phylogenetic, syntenic, and tissue expression analysis of slc22 genes in zebrafish (Danio rerio).
BMC Genomics. 2016 Aug 12;17(1):626. doi: 10.1186/s12864-016-2981-y.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验