Chen Wenxiang, Guo Jiacen, Zhao Qinghua, Gopalan Prashanth, Fafarman Aaron T, Keller Austin, Zhang Mingliang, Wu Yaoting, Murray Christopher B, Kagan Cherie R
Department of Chemical and Biological Engineering , Drexel University , Philadelphia , Pennsylvania 19104 , United States.
ACS Nano. 2019 Jul 23;13(7):7493-7501. doi: 10.1021/acsnano.9b02818. Epub 2019 May 31.
We program the optical properties of colloidal Au nanocrystal (NC) assemblies an unconventional ligand hybridization (LH) strategy to precisely engineer interparticle interactions and design materials with optical properties difficult or impossible to achieve in bulk form. Long-chain hydrocarbon ligands used in NC synthesis are partially exchanged, from 0% to 100%, with compact thiocyanate ligands by controlling the reaction time for exchange. The resulting NC assemblies show transmittance, reflectance, optical permittivity, and direct-current (DC) resistivity that continuously traverse a dielectric-metal transition, providing analog tuning of their physical properties, unlike the digital control realized by complete exchange with ligands of varying length. Exploiting this LH strategy, we create Au NC assemblies that are strong, ultrathin film optical absorbers, as seen by a 6× increase in the extinction of infrared light compared to that in bulk Au thin films and by a temperature rise of 20 °C upon illumination with 808 nm light. Our LH strategy may be applied to the design of materials constructed from NCs of different size, shape, and composition for specific applications.
我们通过一种非常规的配体杂交(LH)策略对胶体金纳米晶体(NC)组装体的光学性质进行编程,以精确调控粒子间相互作用,并设计出具有难以或无法以块状形式实现的光学性质的材料。通过控制交换反应时间,将用于NC合成的长链烃配体从0%到100%部分地与致密的硫氰酸盐配体进行交换。所得的NC组装体表现出透过率、反射率、光学介电常数和直流(DC)电阻率,它们连续地跨越介电-金属转变,实现了其物理性质的模拟调谐,这与通过与不同长度配体完全交换实现的数字控制不同。利用这种LH策略,我们制备出了坚固的超薄薄膜光学吸收体——金NC组装体,与块状金薄膜相比,红外光消光增强了6倍,在用808 nm光照射时温度升高了20℃。我们的LH策略可应用于设计由不同尺寸、形状和组成的NC构建的用于特定应用的材料。