Nanotechnology Group, ETH Zürich, Säumerstasse 4, CH-8803 Rüschlikon, Switzerland.
Institute of Physics SAS, Dubravska cesta 9, 84511 Bratislava, Slovakia.
ACS Nano. 2023 Jul 11;17(13):12774-12787. doi: 10.1021/acsnano.3c03804. Epub 2023 Jun 24.
Nanoparticle superlattices produced with controllable interparticle gap distances down to the subnanometer range are of superior significance for applications in electronic and plasmonic devices as well as in optical metasurfaces. In this work, a method to fabricate large-area (∼1 cm) gold nanoparticle (GNP) superlattices with a typical size of single domains at several micrometers and high-density nanogaps of tunable distances (from 2.3 to 0.1 nm) as well as variable constituents (from organothiols to inorganic S) is demonstrated. Our approach is based on the combination of interfacial nanoparticle self-assembly, subphase exchange, and free-floating ligand exchange. Electrical transport measurements on our GNP superlattices reveal variations in the nanogap conductance of more than 6 orders of magnitude. Meanwhile, nanoscopic modifications in the surface potential landscape of active GNP devices have been observed following engineered nanogaps. optical reflectance measurements during free-floating ligand exchange show a gradual enhancement of plasmonic capacitive coupling with a diminishing average interparticle gap distance down to 0.1 nm, as continuously red-shifted localized surface plasmon resonances with increasing intensity have been observed. Optical metasurfaces consisting of such GNP superlattices exhibit tunable effective refractive index over a broad wavelength range. Maximal real part of the effective refractive index, , reaching 5.4 is obtained as a result of the extreme field confinement in the high-density subnanometer plasmonic gaps.
具有可控制的粒子间间隔距离的纳米粒子超晶格,其下限可达亚纳米范围,对于电子和等离子体器件以及光学超表面中的应用具有重要意义。在这项工作中,展示了一种制造大面积(约 1 cm)金纳米粒子(GNP)超晶格的方法,这些超晶格具有典型的单畴尺寸,在几微米范围内具有高密度的可调距离(从 2.3 到 0.1 nm)的纳米间隙,以及可变的组成部分(从有机硫醇到无机 S)。我们的方法基于界面纳米粒子自组装、亚相交换和游离配体交换的结合。我们对 GNP 超晶格的输运测量显示,纳米间隙的电导变化超过 6 个数量级。同时,在经过工程纳米间隙处理后,活性 GNP 器件的表面电势景观中观察到了纳米级的变化。在游离配体交换过程中的光学反射率测量表明,随着平均粒子间间隔距离减小到 0.1nm,等离子体电容耦合逐渐增强,同时观察到局域表面等离子体共振强度不断增加,红移逐渐增大。由这种 GNP 超晶格组成的光学超表面在宽波长范围内表现出可调的有效折射率。有效折射率的实部最大值 ,达到 5.4,这是由于高密度亚纳米等离子体间隙中极端的场限制所致。