Mo Mianzhen, Murphy Samuel, Chen Zhijiang, Fossati Paul, Li Renkai, Wang Yongqiang, Wang Xijie, Glenzer Siegfried
SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA.
Engineering Department, Lancaster University, Lancaster LA1 4YW, UK.
Sci Adv. 2019 May 24;5(5):eaaw0392. doi: 10.1126/sciadv.aaw0392. eCollection 2019 May.
Materials exposed to extreme radiation environments such as fusion reactors or deep spaces accumulate substantial defect populations that alter their properties and subsequently the melting behavior. The quantitative characterization requires visualization with femtosecond temporal resolution on the atomic-scale length through measurements of the pair correlation function. Here, we demonstrate experimentally that electron diffraction at relativistic energies opens a new approach for studies of melting kinetics. Our measurements in radiation-damaged tungsten show that the tungsten target subjected to 10 displacements per atom of damage undergoes a melting transition below the melting temperature. Two-temperature molecular dynamics simulations reveal the crucial role of defect clusters, particularly nanovoids, in driving the ultrafast melting process observed on the time scale of less than 10 ps. These results provide new atomic-level insights into the ultrafast melting processes of materials in extreme environments.
暴露于极端辐射环境(如聚变反应堆或深空)中的材料会积累大量缺陷,这些缺陷会改变其性能,进而影响其熔化行为。定量表征需要通过测量对关联函数,以飞秒时间分辨率在原子尺度长度上进行可视化。在此,我们通过实验证明,相对论能量下的电子衍射为研究熔化动力学开辟了一种新方法。我们对受辐射损伤的钨的测量表明,每原子遭受10次位移损伤的钨靶在低于熔点的温度下发生熔化转变。双温分子动力学模拟揭示了缺陷团簇,特别是纳米空洞,在驱动小于10皮秒时间尺度上观察到的超快熔化过程中的关键作用。这些结果为极端环境中材料的超快熔化过程提供了新的原子层面见解。