Mo Mianzhen, Tang Minxue, Chen Zhijiang, Peterson J Ryan, Shen Xiaozhe, Baldwin John Kevin, Frost Mungo, Kozina Mike, Reid Alexander, Wang Yongqiang, E Juncheng, Descamps Adrien, Ofori-Okai Benjamin K, Li Renkai, Luo Sheng-Nian, Wang Xijie, Glenzer Siegfried
SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA.
School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610031, P. R. China.
Nat Commun. 2022 Feb 25;13(1):1055. doi: 10.1038/s41467-022-28684-z.
Plasticity is ubiquitous and plays a critical role in material deformation and damage; it inherently involves the atomistic length scale and picosecond time scale. A fundamental understanding of the elastic-plastic deformation transition, in particular, incipient plasticity, has been a grand challenge in high-pressure and high-strain-rate environments, impeded largely by experimental limitations on spatial and temporal resolution. Here, we report femtosecond MeV electron diffraction measurements visualizing the three-dimensional (3D) response of single-crystal aluminum to the ultrafast laser-induced compression. We capture lattice transitioning from a purely elastic to a plastically relaxed state within 5 ps, after reaching an elastic limit of ~25 GPa. Our results allow the direct determination of dislocation nucleation and transport that constitute the underlying defect kinetics of incipient plasticity. Large-scale molecular dynamics simulations show good agreement with the experiment and provide an atomic-level description of the dislocation-mediated plasticity.
塑性无处不在,在材料变形和损伤中起着关键作用;它本质上涉及原子长度尺度和皮秒时间尺度。特别是对弹塑性变形转变,尤其是初始塑性的基本理解,一直是高压和高应变速率环境下的一项重大挑战,很大程度上受到空间和时间分辨率实验限制的阻碍。在此,我们报告了飞秒兆电子伏特电子衍射测量,可视化了单晶铝对超快激光诱导压缩的三维响应。在达到约25 GPa的弹性极限后,我们在5皮秒内捕捉到晶格从纯弹性状态转变为塑性松弛状态。我们的结果允许直接确定构成初始塑性潜在缺陷动力学的位错形核和输运。大规模分子动力学模拟与实验结果显示出良好的一致性,并提供了位错介导塑性的原子水平描述。