Suppr超能文献

基于机器学习的皮肤病学图像识别中的数据增强。

Data augmentation in dermatology image recognition using machine learning.

机构信息

University of Cincinnati, Cincinnati, Ohio.

出版信息

Skin Res Technol. 2019 Nov;25(6):815-820. doi: 10.1111/srt.12726. Epub 2019 May 29.

Abstract

BACKGROUND

Each year in the United States, over 80 million people are affected by acne, atopic dermatitis, rosacea, psoriasis, and impetigo. Artificial intelligence and machine learning could prove to be a good tool for assisting in the diagnosis of dermatological conditions. The objective of this study was to evaluate the use of data augmentation in machine learning image recognition of five dermatological disease manifestations-acne, atopic dermatitis, impetigo, psoriasis, and rosacea.

MATERIALS AND METHODS

Open-source dermatological images were gathered and used to retrain TensorFlow Inception version-3. Retraining was done twice-once with and once without data augmentation. Both models were tested with the same images, and R software was used to perform statistical analysis.

RESULTS

The average of each of the statistical measures (sensitivity, specificity, PPV, NPN, MCC, and F1 Score) increased when data augmentation was added to the model. In particular, the average Matthews correlation coefficient increased by 7.7%. Each of the five dermatological manifestations had an increase in area under the curve (AUC) after data augmentation with the average increase in AUC of 0.132 and a standard deviation of 0.033. Atopic dermatitis had the highest increase in AUC of 0.18. With data augmentation, the lowest AUC was 0.87 for psoriasis and the highest was 0.97 for acne, indicating that the model performs well.

CONCLUSION

With a deep learning-based approach, it is possible to differentiate dermatological images with appreciable MCC, F1 score, and AUC. Further, data augmentation can be used to increase the model's accuracy by a significant amount.

摘要

背景

每年在美国,有超过 8000 万人受到痤疮、特应性皮炎、酒渣鼻、银屑病和脓疱疮的影响。人工智能和机器学习可以证明是辅助诊断皮肤科疾病的良好工具。本研究的目的是评估数据增强在机器学习对五种皮肤科疾病表现(痤疮、特应性皮炎、脓疱疮、银屑病和酒渣鼻)的图像识别中的应用。

材料和方法

收集开源皮肤科图像,并用于重新训练 TensorFlow Inception 版本-3。在没有和有数据增强的情况下,分别对模型进行了两次重新训练。使用相同的图像对两个模型进行测试,并使用 R 软件进行统计分析。

结果

当向模型添加数据增强时,每个统计指标(敏感性、特异性、PPV、NPN、MCC 和 F1 评分)的平均值都会增加。特别是,平均 Matthews 相关系数增加了 7.7%。在进行数据增强后,五种皮肤科表现中的每一种的曲线下面积(AUC)都有所增加,平均 AUC 增加了 0.132,标准差为 0.033。特应性皮炎的 AUC 增加最高,为 0.18。使用数据增强后,银屑病的 AUC 最低为 0.87,痤疮的 AUC 最高为 0.97,表明模型表现良好。

结论

通过基于深度学习的方法,可以区分具有可观 MCC、F1 评分和 AUC 的皮肤科图像。此外,数据增强可以显著提高模型的准确性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验