Maul L V, Meienberger N, Kaufmann L
Klinik für Dermatologie, Universitätsspital Basel, Basel, Schweiz.
Klinik für Dermatologie, Universitätsspital Zürich, Zürich, Schweiz.
Hautarzt. 2020 Sep;71(9):677-685. doi: 10.1007/s00105-020-04657-5.
In recent years, many medical specialties with a visual focus have been revolutionized by image analysis algorithms using artificial intelligence (AI). As dermatology belongs to this field, it has the potential to play a pioneering role in the use of AI.
The current use of AI for the diagnosis and follow-up of dermatoses is reviewed and the future potential of these technologies is discussed.
This article is based on a selective review of the literature using Embase and MEDLINE and the keywords "psoriasis", "eczema", "dermatoses" and "acne" combined with "artificial intelligence", "machine learning", "deep learning", "neural network", "computer-guided", "supervised machine learning" or "unsupervised machine learning" were searched.
In comparison to examiner-dependent intra- and interindividually fluctuating scores for the assessment of inflammatory dermatoses (e.g. the Psoriasis Areas Severity Index [PASI] and body surface area [BSA]), AI-based algorithms can potentially offer reproducible, standardized evaluations of these scores. Whereas promising algorithms have already been developed for the diagnosis of psoriasis, there is currently only scarce work on the use of AI in the context of eczema.
The latest developments in this field show the enormous potential of AI-based diagnostics and follow-up of dermatological clinical pictures by means of an autonomous computer-based image analysis. These noninvasive, optical examination methods provide valuable additional information, but dermatological interaction remains indispensable in daily clinical practice.
近年来,许多以视觉为重点的医学专科因使用人工智能(AI)的图像分析算法而发生了变革。由于皮肤科属于这一领域,它在人工智能的应用方面有潜力发挥先锋作用。
综述目前人工智能在皮肤病诊断和随访中的应用,并探讨这些技术的未来潜力。
本文基于对使用Embase和MEDLINE的文献的选择性综述,并搜索了关键词“银屑病”“湿疹”“皮肤病”和“痤疮”,同时结合“人工智能”“机器学习”“深度学习”“神经网络”“计算机引导”“监督机器学习”或“无监督机器学习”。
与评估炎症性皮肤病时依赖检查者的个体内和个体间波动的评分(如银屑病面积和严重程度指数[PASI]和体表面积[BSA])相比,基于人工智能的算法有可能对这些评分提供可重复、标准化的评估。虽然已经开发出了用于银屑病诊断的有前景的算法,但目前在湿疹背景下使用人工智能的研究还很少。
该领域的最新进展表明,基于人工智能的皮肤病临床图像诊断和随访具有巨大潜力,可通过自主的计算机图像分析实现。这些非侵入性的光学检查方法提供了有价值的额外信息,但在日常临床实践中,皮肤科医生的参与仍然不可或缺。