Suppr超能文献

基于图像的人工智能在银屑病评估中的应用:诊断新时代的开端?

Image-Based Artificial Intelligence in Psoriasis Assessment: The Beginning of a New Diagnostic Era?

机构信息

Department of Dermatology, University Hospital Basel, Basel, Switzerland.

Faculty of Medicine, University of Basel, Basel, Switzerland.

出版信息

Am J Clin Dermatol. 2024 Nov;25(6):861-872. doi: 10.1007/s40257-024-00883-y. Epub 2024 Sep 11.

Abstract

Psoriasis, a chronic inflammatory skin disease, affects millions of people worldwide. It imposes a significant burden on patients' quality of life and healthcare systems, creating an urgent need for optimized diagnosis, treatment, and management. In recent years, image-based artificial intelligence (AI) applications have emerged as promising tools to assist physicians by offering improved accuracy and efficiency. In this review, we provide an overview of the current landscape of image-based AI applications in psoriasis. Emphasis is placed on machine learning (ML) algorithms, a key subset of AI, which enable automated pattern recognition for various tasks. Key AI applications in psoriasis include lesion detection and segmentation, differentiation from other skin conditions, subtype identification, automated area involvement, and severity scoring, as well as personalized treatment selection and response prediction. Furthermore, we discuss two commercially available systems that utilize standardized photo documentation, automated segmentation, and semi-automated Psoriasis Area and Severity Index (PASI) calculation for patient assessment and follow-up. Despite the promise of AI in this field, many challenges remain. These include the validation of current models, integration into clinical workflows, the current lack of diversity in training-set data, and the need for standardized imaging protocols. Addressing these issues is crucial for the successful implementation of AI technologies in clinical practice. Overall, we underscore the potential of AI to revolutionize psoriasis management, highlighting both the advancements and the hurdles that need to be overcome. As technology continues to evolve, AI is expected to significantly improve the accuracy, efficiency, and personalization of psoriasis treatment.

摘要

银屑病,一种慢性炎症性皮肤疾病,影响着全球数百万人。它给患者的生活质量和医疗保健系统带来了巨大负担,因此迫切需要优化诊断、治疗和管理方法。近年来,基于图像的人工智能(AI)应用已经成为一种有前途的工具,可以通过提高准确性和效率来帮助医生。在这篇综述中,我们概述了目前基于图像的 AI 在银屑病中的应用。重点介绍了机器学习(ML)算法,这是 AI 的一个关键子集,它可以实现各种任务的自动化模式识别。在银屑病中,关键的 AI 应用包括病变检测和分割、与其他皮肤状况的区分、亚型识别、自动面积受累和严重程度评分,以及个性化治疗选择和反应预测。此外,我们还讨论了两个商业化的系统,它们利用标准化的照片记录、自动分割和半自动化的银屑病面积和严重程度指数(PASI)计算来进行患者评估和随访。尽管 AI 在这一领域有很大的潜力,但仍存在许多挑战。这些挑战包括当前模型的验证、与临床工作流程的整合、训练集数据当前缺乏多样性以及对标准化成像协议的需求。解决这些问题对于在临床实践中成功实施 AI 技术至关重要。总的来说,我们强调了 AI 颠覆银屑病管理的潜力,突出了进展和需要克服的障碍。随着技术的不断发展,AI 有望显著提高银屑病治疗的准确性、效率和个性化程度。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4760/11511687/c241929287b2/40257_2024_883_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验