Medical Device Research Institute, College of Science and Engineering, Flinders University, Adelaide, South Australia, Australia.
Radboud University Medical Center, Radboud Institute for Health Sciences, Orthopaedic Research Lab., Nijmegen, the Netherlands.
J Mech Behav Biomed Mater. 2019 Sep;97:278-287. doi: 10.1016/j.jmbbm.2019.04.054. Epub 2019 May 4.
Primary press-fit fixation of femoral knee prostheses is obtained thanks to the inside dimensions of the implant being undersized with respect to the bone cuts created intra-operatively, dictated by a press-fit specified by the implant design. However, during prostheses press-fit implantation, high compressive and shear stresses at the implant-bone interface are generated, which causes permanent bone damage. The extent of this damage is unknown, but it may influence the implant stability and be a contributing factor to aseptic loosening, a main cause of revisions for knee arthroplasty. The aim of this ex-vivo study was to quantify, using high-resolution peripheral quantitative computed tomography (HR-pQCT) imaging and Digital Volume Correlation (DVC), permanent bone deformation due to press-fit femoral knee implantation of a commonly used implant. Six human cadaveric distal femora were resected and imaged with HR-pQCT (60.7 μm/voxel, isotropic). Femurs were fitted with cementless femoral knee implants (Sigma PFC) and rescanned after implant removal. For each femur, permanent deformation was examined in the anterior, posterior-medial and posterior-lateral condyles for volumes of interest (VOIs) of 10 mm depth. The bone volume fraction (BV/TV) for the VOIs in pre- and post-implantation images was calculated, at increasing depth from the bone surface. DVC was applied on the VOIs pre- and post-implantation, to assess trabecular bone displacements and plastically accumulated strains. The "BV/TV/BV/TV ratio vs. depth" showed, consistently among the six femurs, three consecutive points of interest at increasing bone depth, indicating: bone removal (ratio<100%), compaction (ratio>100%) and no changes (ratio = 100%). Accordingly, the trabecular bone displacement computed by DVC suggested bone compaction up to 2.6 ± 0.8 mm in depth, with peak third principal strains of -162,100 ± 55,000 με (mean absolute error: 1,000-2,000 με, SD: 200-500 με), well above the yield strain of bone (7,000-10,000 με). Combining 3D-imaging, at spatial resolutions obtainable with clinical HR-pQCT, and DVC, determines the extent of plastic deformation and accumulated compressive strains occurring within the bone due to femoral press-fit implantation. The methods and data presented can be used to compare different implants, implant surface coatings and press-fit values. These can also be used to advance and validate computational models by providing information about the bone-implant interface obtained experimentally. Future studies using these methods can assist in determining the influence of bone damage on implant stability and the subsequent osseointegration.
股骨膝关节假体的初次压配合固定是通过使植入物的内部尺寸小于术中创建的骨切的尺寸来实现的,这是由植入物设计规定的压配合所决定的。然而,在假体压配合植入过程中,在植入物-骨界面会产生高的压缩和剪切应力,这会导致永久性的骨损伤。这种损伤的程度尚不清楚,但它可能会影响植入物的稳定性,并成为无菌性松动的一个促成因素,无菌性松动是膝关节置换术翻修的主要原因。本体外研究的目的是使用高分辨率外周定量计算机断层扫描(HR-pQCT)成像和数字体视学(DVC)来量化常用植入物的股骨膝关节压配合植入引起的永久性骨变形。从六个人体尸体的股骨远端切除并进行 HR-pQCT 成像(60.7 µm/voxel,各向同性)。将无水泥股骨膝关节假体(Sigma PFC)安装在股骨上,并在假体取出后重新扫描。对于每个股骨,在前部、后内侧和后外侧髁的感兴趣体积(VOI)中检查 10 mm 深度的永久性变形。在植入前和植入后的 VOI 中计算骨体积分数(BV/TV),从骨表面逐渐增加深度。在植入前和植入后应用 DVC 对 VOI 进行分析,以评估小梁骨位移和塑性累积应变。在六个股骨中,一致地,“BV/TV/BV/TV 比与深度”显示出三个连续的感兴趣点,随着骨深度的增加,表明:骨去除(比值<100%)、压实(比值>100%)和无变化(比值=100%)。相应地,DVC 计算的小梁骨位移表明,在 2.6 ± 0.8 mm 的深度范围内发生骨压实,峰值第三主应变为-162,100 ± 55,000 με(平均绝对误差:1,000-2,000 με,SD:200-500 με),远高于骨的屈服应变(7,000-10,000 με)。结合临床 HR-pQCT 可获得的空间分辨率的 3D 成像和 DVC,可以确定由于股骨压配合植入而在骨内发生的塑性变形和累积压缩应变的程度。所提出的方法和数据可用于比较不同的植入物、植入物表面涂层和压配合值。这些还可以通过提供从实验获得的关于骨-植入物界面的信息来推进和验证计算模型。使用这些方法的未来研究可以帮助确定骨损伤对植入物稳定性和随后的骨整合的影响。